scholarly journals Diagnosing diapycnal mixing from passive tracers

Author(s):  
XIAOZHOU RUAN ◽  
RAFFAELE FERRARI

AbstractTurbulent mixing across density surfaces transforms abyssal ocean waters into lighter waters and is vital to close the deepest branches of the global overturning circulation. Over the last twenty years, mixing rates inferred from in-situ microstructure profilers and tracer release experiments (TREs) have provided valuable insights in the connection between small-scale mixing and large-scale ocean circulation. Problematically, estimates based on TREs consistently exceed those from collocated in-situ microstructure measurements. These differences have been attributed to a low bias in the microstructure estimates which can miss strong, but rare, mixing events. Here we demonstrate that TRE estimates can suffer from a high bias, because of the approximations generally made to interpret the data. We first derive formulas to estimate mixing from the temporal growth of the second moment of a tracer patch by extending Taylor’s celebrated formula to account for both density stratification and variations in mixing rates. The formulas are validated with tracers released in numerical simulations of turbulent flows and then used to discuss biases in the interpretation of TREs based estimates and how to possibly overcome them.

2020 ◽  
Author(s):  
Shenjie Zhou ◽  
Xiaoming Zhai ◽  
Ian Renfrew

<p>High-frequency and small-scale processes in the atmosphere have an important influence on the evolution of the underlying ocean. They can not only introduce variability to the coupled systems but also have long-term ramification effects on the sea surface temperature, thermocline structure and large-scale ocean general circulation via nonlinear interactions.</p><p>Comparisons between the newly-released ECMWF fifth-generation global climate reanalyses (ERA5) wind product and satellite/in-situ observations show that the latest reanalyses winds still considerably underestimate wind variability at high-frequencies and small-scales. A novel approach, Cellular Automata (CA), is used here to stochastically perturb the ERA5 wind field. CA, originally introduced into the weather forecast model to mimic the near-grid-scale variability associated with convective cloud clustering, generates spatially and temporally coherent perturbation patterns. Results show that the CA-perturbed ERA5 wind field enjoys an improved wavenumber spectrum, especially over high wavenumber bands (scales <400 km), when compared to the QuikSCAT measurements. In addition, including CA patterns also brings the level of wind variability at high-frequencies (>1 cpd) closer to in-situ mooring measurements. The local response of the upper ocean properties is investigated by a Multi-Column K-Profile Parameterization (MC_KPP) ocean mixed layer model over Atlantic section. It is found that overall the sea surface temperature (SST) decreases and oceanic boundary layer (OBL) deepens to respond to the enhanced surface turbulent heat loss and shear instability generated at the base of surface OBL caused by the small-scale wind perturbations. In particular, SST tends to decrease the most over the summer hemisphere by up to 1°C locally and 0.1°C averaging across the basin, in correlation with shallower background OBL and smaller OBL heat capacity. </p><p>The ocean states under the forcing of stochastic wind perturbation as expressed by the local response are found rectified by a non-negilible magnitude. We argued that although the missed small-scale and high-frequency wind variability may be represented differently than our approach, our results highlighted the fact that these variabilities should take a singificant part in driving the current generation of coupled climate model. Furhtermore, the temproal and spatial variabilities of the local signals can pose significant influence on the large-scale ocean circulation in terms of their pathways, strengths and variabilities. The dynamical response of the ocean circulation is to be further understood with an eddy-resolving Massachusette Institute of Technology General Circulation Model (MITgcm).</p>


2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


2018 ◽  
Vol 36 (4) ◽  
pp. 1099-1116
Author(s):  
Gerald A. Lehmacher ◽  
Miguel F. Larsen ◽  
Richard L. Collins ◽  
Aroh Barjatya ◽  
Boris Strelnikov

Abstract. Four mesosphere–lower thermosphere temperature and turbulence profiles were obtained in situ within ∼30 min and over an area of about 100 by 100 km during a sounding rocket experiment conducted on 26 January 2015 at Poker Flat Research Range in Alaska. In this paper we examine the spatial and temporal variability of mesospheric turbulence in relationship to the static stability of the background atmosphere. Using active payload attitude control, neutral density fluctuations, a tracer for turbulence, were observed with very little interference from the payload spin motion, and with high precision (<0.01 %) at sub-meter resolution. The large-scale vertical temperature structure was very consistent between the four soundings. The mesosphere was almost isothermal, which means more stratified, between 60 and 80 km, and again between 88 and 95 km. The stratified regions adjoined quasi-adiabatic regions assumed to be well mixed. Additional evidence of vertical transport and convective activity comes from sodium densities and trimethyl aluminum trail development, respectively, which were both observed simultaneously with the in situ measurements. We found considerable kilometer-scale temperature variability with amplitudes of 20 K in the stratified region below 80 km. Several thin turbulent layers were embedded in this region, differing in width and altitude for each profile. Energy dissipation rates varied between 0.1 and 10 mW kg−1, which is typical for the winter mesosphere. Very little turbulence was observed above 82 km, consistent with very weak small-scale gravity wave activity in the upper mesosphere during the launch night. On the other hand, above the cold and prominent mesopause at 102 km, large temperature excursions of +40 to +70 K were observed. Simultaneous wind measurements revealed extreme wind shears near 108 km, and combined with the observed temperature gradient, isolated regions of unstable Richardson numbers (0<Ri<0.25) were detected in the lower thermosphere. The experiment was launched into a bright auroral arc under moderately disturbed conditions (Kp∼5).


2021 ◽  
Vol 928 ◽  
Author(s):  
A. Mashayek ◽  
C.P. Caulfield ◽  
M.H. Alford

We present a new, simple and physically motivated parameterization, based on the ratio of Thorpe and Ozmidov scales, for the irreversible turbulent flux coefficient $\varGamma _{\mathcal {M}}= {\mathcal {M}}/\epsilon$ , i.e. the ratio of the irreversible rate ${\mathcal {M}}$ at which the background potential energy increases in a stratified flow due to macroscopic motions to the dissipation rate of turbulent kinetic energy $\epsilon$ . Our parameterization covers all three key phases (crucially, in time) of a shear-induced stratified turbulence life cycle: the initial, ‘hot’ growing phase, the intermediate energetically forced phase and the final ‘cold’ fossilization decaying phase. Covering all three phases allows us to highlight the importance of the intermediate one, to which we refer as the ‘Goldilocks’ phase due to its apparently optimal (and so neither too hot nor too cold, but just right) balance, in which energy transfer from background shear to the turbulent mixing is most efficient. The value of $\varGamma _{\mathcal {M}}$ is close to 1/3 during this phase, which we demonstrate appears to be related to an adjustment towards a critical or marginal Richardson number for sustained turbulence ${\sim }0.2\text {--}0.25$ . Importantly, although buoyancy effects are still significant at leading order for the turbulent dynamics during this intermediate phase, the marginal balance in the flow ensures that the turbulent mixing of the (density) scalar is nevertheless effectively ‘locked’ to the turbulent mixing of momentum. We present supporting evidence for our parameterization through comparison with six oceanographic datasets that span various turbulence generation regimes and a wide range of geographical location and depth. Using these observations, we highlight the significance of parameterizing an inherently variable flux coefficient for capturing the turbulent flux associated with rare energetic, yet fundamentally shear-driven (and so not strongly stratified) overturns that make a disproportionate contribution to the total mixing. We also highlight the importance of representation of young turbulent patches in the parameterization for connecting the small scale physics to larger scale applications of mixing such as ocean circulation and tracer budgets. Shear-induced turbulence is therefore central to irreversible mixing in the world's oceans, apparently even close to the seafloor, and it is critically important to appreciate the inherent time dependence and evolution of mixing events: history matters to mixing.


2021 ◽  
Author(s):  
Damien Desbruyères ◽  
Léon Chafik ◽  
Guillaume Maze

&lt;p&gt;The Subpolar North Atlantic (SPNA) is known for rapid reversals of decadal temperature trends, with ramifications encompassing the large-scale meridional overturning and gyre circulations, Arctic heat and mass balances, or extreme continental weather. Here, we combine datasets derived from sustained ocean observing systems (satellite and in situ), and idealized observation-based modelling (advection-diffusion of a passive tracer) and machine learning technique (ocean profile clustering) to document and explain the most-recent and ongoing cooling-to-warming transition of the SPNA. Following a gradual cooling of the region that was persisting since 2006, a surface-intensified and large-scale warming sharply emerged in 2016 following an ocean circulation shift that enhanced the northeastward penetration of warm and saline waters from the western subtropics. Driving mechanisms and ramification for deep ocean heat uptake will be discussed.&lt;/p&gt;


1984 ◽  
Vol 5 ◽  
pp. 133-140 ◽  
Author(s):  
Albert J. Semtner

A number of processes in the ocean must be modeled properly in order to produce valid estimates of oceanic heat transport, sea-surface temperature, and sea-ice extent in climate studies. These include: wind-driven turbulent mixing and water transport in the surface layer, internal vertical mixing due to several small-scale mechanisms, horizontal and vertical exchanges by mesoscale eddies, mixing along isopycnals, large-scale transport by currents, deep convection in polar regions, and boundary exchanges with atmosphere, ice, and land. Techniques to model these processes are described. Prospects are given for parameterizing the effects of phenomena that cannot be resolved in climate studies, particularly mesoscale eddies. Past simulations of the ocean in climate studies are reviewed. A modeling strategy is outlined for an improved treatment of the ocean, consistent with the computational power soon to be available.


1981 ◽  
Vol 94 ◽  
pp. 373-391
Author(s):  
Gerhard Haerendel

Two processes are discussed which violate the frozen-in condition in a highly conducting plasma, reconnection and the auroral acceleration process. The first applies to situations in which . It plays an important role in the interaction of the solar wind with the Earth's magnetic field and controls energy input into as well as energetic particle release from the magnetosphere. Detailed in situ studies of the process on the dayside magnetopause reveal its transient and small-scale nature. The auroral acceleration process occurs in the low magnetosphere (β « 1) and accompanies sudden releases of magnetic shear stresses which exist in large-scale magnetospheric-ionospheric current circuits. The process is interpreted as a kind of breaking. The movements of the magnetospheric plasma which lead to a relief of the magnetic tensions occur in thin sheets and are decoupled along the magnetic field lines by parallel electric potential drops. It is this voltage that accelerates the primary auroral particles. The visible arcs are then traces of the magnetic breaking process at several 1000 km altitude.


1999 ◽  
Vol 394 ◽  
pp. 261-279 ◽  
Author(s):  
ROBERTO VERZICCO ◽  
JAVIER JIMÉNEZ

This paper discusses numerical experiments in which an initially uniform columnar vortex is subject to several types of axisymmetric forcing that mimic the strain field of a turbulent flow. The mean value of the strain along the vortex axis is in all cases zero, and the vortex is alternately stretched and compressed. The emphasis is on identifying the parameter range in which the vortex survives indefinitely. This extends previous work in which the effect of steady single-scale non-uniform strains was studied. In a first series of experiments the effect of the unsteadiness of the forcing is analysed, and it is found that the vortex survives as a compact object if the ratio between the oscillation frequency and the strain itself is low enough. A theoretical explanation is given which agrees with the numerical results. The strain is then generalized to include several spatial scales and oscillation frequencies, with characteristics similar to those in turbulent flows. The largest velocities are carried by the large scales, while the highest gradients and faster time scales are associated with the shorter wavelengths. Also in these cases ‘infinitely long’ vortices are obtained which are more or less uniform and compact. Vorticity profiles averaged along their axes are approximately Gaussian. The radii obtained from these profiles are proportional to the Burgers' radius of the r.m.s. (small-scale) axial strain, while the azimuthal velocities are proportional to the maximum (large-scale) axial velocity differences. The study is motivated by previous observations of intense vortex filaments in turbulent flows, and the scalings found in the present experiments are consistent with those found in the turbulent simulations.


This paper reviews how Kolmogorov postulated for the first time the existence of a steady statistical state for small-scale turbulence, and its defining parameters of dissipation rate and kinematic viscosity. Thence he made quantitative predictions of the statistics by extending previous methods of dimensional scaling to multiscale random processes. We present theoretical arguments and experimental evidence to indicate when the small-scale motions might tend to a universal form (paradoxically not necessarily in uniform flows when the large scales are gaussian and isotropic), and discuss the implications for the kinematics and dynamics of the fact that there must be singularities in the velocity field associated with the - 5/3 inertial range spectrum. These may be particular forms of eddy or ‘eigenstructure’ such as spiral vortices, which may not be unique to turbulent flows. Also, they tend to lead to the notable spiral contours of scalars in turbulence, whose self-similar structure enables the ‘box-counting’ technique to be used to measure the ‘capacity’ D K of the contours themselves or of their intersections with lines, D' K . Although the capacity, a term invented by Kolmogorov (and studied thoroughly by Kolmogorov & Tikhomirov), is like the exponent 2 p of a spectrum in being a measure of the distribution of length scales ( D' K being related to 2 p in the limit of very high Reynolds numbers), the capacity is also different in that experimentally it can be evaluated at local regions within a flow and at lower values of the Reynolds number. Thus Kolmogorov & Tikhomirov provide the basis for a more widely applicable measure of the self-similar structure of turbulence. Finally, we also review how Kolmogorov’s concept of the universal spatial structure of the small scales, together with appropriate additional physical hypotheses, enables other aspects of turbulence to be understood at these scales; in particular the general forms of the temporal statistics such as the high-frequency (inertial range) spectra in eulerian and lagrangian frames of reference, and the perturbations to the small scales caused by non-isotropic, non-gaussian and inhomogeneous large-scale motions.


2000 ◽  
Vol 1 (2) ◽  
pp. 209-227 ◽  
Author(s):  
S Menon

Next-generation gas turbine and internal combustion engines are required to reduce pollutant emissions significantly and also to be fuel efficient. Accurate prediction of pollutant formation requires proper resolution of the spatio-temporal evolution of the unsteady mixing and combustion processes. Since conventional steady state methods are not able to deal with these features, methodology based on large-eddy simulations (LESs) is becoming a viable choice to study unsteady reacting flows. This paper describes a new LES methodology developed recently that has demonstrated a capability to simulate reacting turbulent flows accurately. A key feature of this new approach is the manner in which small-scale turbulent mixing and combustion processes are simulated. This feature allows proper characterization of the effects of both large-scale convection and small-scale mixing on the scalar processes, thereby providing a more accurate prediction of chemical reaction effects. LESs of high Reynolds number premixed flames in the flamelet regime and in the distributed reaction regime are used to describe the ability of the new subgrid combustion model.


Sign in / Sign up

Export Citation Format

Share Document