scholarly journals Carbon Flux Phenology from the Sky: Evaluation for Maize and Soybean

2018 ◽  
Vol 35 (4) ◽  
pp. 877-892 ◽  
Author(s):  
Alexandria G. McCombs ◽  
April L. Hiscox ◽  
Cuizhen Wang ◽  
Ankur R. Desai ◽  
Andrew E. Suyker ◽  
...  

AbstractCarbon flux phenology is widely used to understand carbon flux dynamics and surface exchange processes. Vegetation phenology has been widely evaluated by remote sensors; however, very few studies have evaluated the use of vegetation phenology for identifying carbon flux phenology. Currently available techniques to derive net ecosystem exchange (NEE) from a satellite image use a single generic modeling subgroup for agricultural crops. But, carbon flux phenological processes vary highly with crop types and land management practices; this paper reexamines this assumption. Presented here are an evaluation of ground-truth remotely sensed vegetation indices with in situ NEE measurements and an identification of vegetation indices for estimating carbon flux phenology metrics by crop type. Results show that the performance of different vegetation indices as an indicator of phenology varies with crop type, particularly when identifying the start of a season and the peak of a season. Maize fields require vegetation indices that make use of the near-infrared and red reflectance bands, while soybean fields require those making use of the shortwave infrared (IR) and near-IR bands. In summary, the study identifies how to best utilize remote sensing technology as a crop-specific measurement tool.

Author(s):  
M. Ustuner ◽  
F. B. Sanli ◽  
S. Abdikan ◽  
M. T. Esetlili ◽  
Y. Kurucu

Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.


2019 ◽  
Vol 11 (11) ◽  
pp. 93
Author(s):  
Luiz Carlos Pietrowski Basso ◽  
Vagner Alex Pesck ◽  
Mailson Roik ◽  
Afonso Figueiredo Filho ◽  
Thiago Floriani Stepka ◽  
...  

The present research aims to evaluate the biomass estimates of Araucaria angustifolia (Bertol.) Kuntze trees obtained by the direct method, then present results generated from a 2.0 m resolution spectral image Worldview-2 satellite. The quantification of the biomass in the field was first carried out of 29 trees of the specie of interest with DBH ≥ 40 cm and then with the image aid the crowns were delimited for analysis. From the spectral bands (B2-blue, B3-green, B4-yellow, B5-red, B6-near red, B7-near infrared 2 and B8-near infrared 2), it was possible to obtain vegetation indexes proposed by the literature (NDVI, NDVI_2, RS and SAVI_0,25) and later incorporated with dendrometric data a correlation matrix was formed. Additionally, mathematical equations were used to estimate biomass and carbon as a function of dendrometric variables and information obtained from the satellite image processing. From these equations, the ones that presented better results were those that contained independent dendrometric variables (DBH) and those that contained vegetation indices (NDVI_2 and NDVI). For the dendrometers, the relative error found was 14.42% and 14.32% for biomass and carbon respectively, while for the digital ones, NDVI_2 found a relative error of 37.82% and an adjusted coefficient of determination of 0.88 in the biomass equations. In the carbon equations, the NDVI variable presented the best results, being 38.56% the relative error and 0.87 the determination coefficient.


FLORESTA ◽  
2019 ◽  
Vol 50 (1) ◽  
pp. 1053
Author(s):  
Elfany Reis do Nascimento Lopes ◽  
Jocy Ana Paixão De Sousa ◽  
José Carlos De Souza ◽  
José Luiz Albuquerque Filho ◽  
Roberto Wagner Lourenço

Considering the intrinsic relationship between vegetation and conservation of water resources, we evaluated the natural vegetation of an Atlantic Forest fragment through landscape metrics and spectral vegetation indices, indicating ways for its conservation in the Una river basin, Ibiúna, São Paulo, Brazil. We analyzed landscape metrics and the extraction of mean altitude, slope, and distance from the drainage network for each fragment based on the vectors of forest fragments in the river basin, using ArcGis 10.3. Normalized difference vegetation indices, photochemical production, and carbon flux were estimated by combining red, green, blue, and infrared spectral bands near the RapidEye satellite image. The results showed 197 fragments with sizes ranging from 1 to 306 hectares and irregularly shaped. The largest fragments are few in number, but account for 52% of the river basin's vegetation cover area. The vegetation presented high levels of biomass but moderate photosynthetic production, coinciding for a moderate carbon flux. The best scores were related to fragments at higher altitudes, in sloping areas next to drainage sites. Actions to conserve the fragments of larger areas and draw up environmental awareness measures should be encouraged, since high agricultural vocation may incite the reduction of these areas to increase economic production. 


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 251
Author(s):  
Rachane Malinee ◽  
Dimitris Stratoulias ◽  
Narissara Nuthammachot

Oil palm (Elaeis guineensis) trees are an important contributor of recent economic development in Southeast Asia. The high product yield, and the consequent high profitability, has led to a widespread expansion of plantations in the greater region. However, oil palms are susceptible to diseases that can have a detrimental effect. In this study we use hyper- and multi-spectral remote sensing to detect diseased oil palm trees in Krabi province, Thailand. Proximate spectroscopic measurements were used to identify and discern differences in leaf spectral radiance; the results indicate a relatively higher radiance in visible and near-infrared for the healthy leaves in comparison to the diseased. From a total of 113 samples for which the geolocation and the hyperspectral radiance were recorded, 59 and 54 samples were healthy and diseased oil palm trees, respectively. Moreover, a WorldView-2 satellite image was used to investigate the usability of traditional vegetation indices and subsequently detecting diseased oil palm trees. The results show that the overall maximum likelihood classification accuracy is 85.98%, the Kappa coefficient 0.71 and the producer’s accuracy for healthy and diseased oil palm trees 83.33 and 78.95, respectively. We conclude that high spatial and spectral resolutions can play a vital role in monitoring diseases in oil palm plantations.


2020 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Faradina Marzukhi ◽  
Nur Nadhirah Rusyda Rosnan ◽  
Md Azlin Md Said

The aim of this study is to analyse the relationship between vegetation indices of Normalized Difference Vegetation Index (NDVI) and soil nutrient of oil palm plantation at Felcra Nasaruddin Bota in Perak for future sustainable environment. The satellite image was used and processed in the research. By Using NDVI, the vegetation index was obtained which varies from -1 to +1. Then, the soil sample and soil moisture analysis were carried in order to identify the nutrient values of Nitrogen (N), Phosphorus (P) and Potassium (K). A total of seven soil samples were acquired within the oil palm plantation area. A regression model was then made between physical condition of the oil palms and soil nutrients for determining the strength of the relationship. It is hoped that the risk map of oil palm healthiness can be produced for various applications which are related to agricultural plantation.


2021 ◽  
Vol 13 (3) ◽  
pp. 536
Author(s):  
Eve Laroche-Pinel ◽  
Mohanad Albughdadi ◽  
Sylvie Duthoit ◽  
Véronique Chéret ◽  
Jacques Rousseau ◽  
...  

The main challenge encountered by Mediterranean winegrowers is water management. Indeed, with climate change, drought events are becoming more intense each year, dragging the yield down. Moreover, the quality of the vineyards is affected and the level of alcohol increases. Remote sensing data are a potential solution to measure water status in vineyards. However, important questions are still open such as which spectral, spatial, and temporal scales are adapted to achieve the latter. This study aims at using hyperspectral measurements to investigate the spectral scale adapted to measure their water status. The final objective is to find out whether it would be possible to monitor the vine water status with the spectral bands available in multispectral satellites such as Sentinel-2. Four Mediterranean vine plots with three grape varieties and different water status management systems are considered for the analysis. Results show the main significant domains related to vine water status (Short Wave Infrared, Near Infrared, and Red-Edge) and the best vegetation indices that combine these domains. These results give some promising perspectives to monitor vine water status.


2021 ◽  
Vol 13 (2) ◽  
pp. 233
Author(s):  
Ilja Vuorinne ◽  
Janne Heiskanen ◽  
Petri K. E. Pellikka

Biomass is a principal variable in crop monitoring and management and in assessing carbon cycling. Remote sensing combined with field measurements can be used to estimate biomass over large areas. This study assessed leaf biomass of Agave sisalana (sisal), a perennial crop whose leaves are grown for fibre production in tropical and subtropical regions. Furthermore, the residue from fibre production can be used to produce bioenergy through anaerobic digestion. First, biomass was estimated for 58 field plots using an allometric approach. Then, Sentinel-2 multispectral satellite imagery was used to model biomass in an 8851-ha plantation in semi-arid south-eastern Kenya. Generalised Additive Models were employed to explore how well biomass was explained by various spectral vegetation indices (VIs). The highest performance (explained deviance = 76%, RMSE = 5.15 Mg ha−1) was achieved with ratio and normalised difference VIs based on the green (R560), red-edge (R740 and R783), and near-infrared (R865) spectral bands. Heterogeneity of ground vegetation and resulting background effects seemed to limit model performance. The best performing VI (R740/R783) was used to predict plantation biomass that ranged from 0 to 46.7 Mg ha−1 (mean biomass 10.6 Mg ha−1). The modelling showed that multispectral data are suitable for assessing sisal leaf biomass at the plantation level and in individual blocks. Although these results demonstrate the value of Sentinel-2 red-edge bands at 20-m resolution, the difference from the best model based on green and near-infrared bands at 10-m resolution was rather small.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 341
Author(s):  
Pauliina Salmi ◽  
Matti A. Eskelinen ◽  
Matti T. Leppänen ◽  
Ilkka Pölönen

Spectral cameras are traditionally used in remote sensing of microalgae, but increasingly also in laboratory-scale applications, to study and monitor algae biomass in cultures. Practical and cost-efficient protocols for collecting and analyzing hyperspectral data are currently needed. The purpose of this study was to test a commercial, easy-to-use hyperspectral camera to monitor the growth of different algae strains in liquid samples. Indices calculated from wavebands from transmission imaging were compared against algae abundance and wet biomass obtained from an electronic cell counter, chlorophyll a concentration, and chlorophyll fluorescence. A ratio of selected wavebands containing near-infrared and red turned out to be a powerful index because it was simple to calculate and interpret, yet it yielded strong correlations to abundances strain-specifically (0.85 < r < 0.96, p < 0.001). When all the indices formulated as A/B, A/(A + B) or (A − B)/(A + B), where A and B were wavebands of the spectral camera, were scrutinized, good correlations were found amongst them for biomass of each strain (0.66 < r < 0.98, p < 0.001). Comparison of near-infrared/red index to chlorophyll a concentration demonstrated that small-celled strains had higher chlorophyll absorbance compared to strains with larger cells. The comparison of spectral imaging to chlorophyll fluorescence was done for one strain of green algae and yielded strong correlations (near-infrared/red, r = 0.97, p < 0.001). Consequently, we described a simple imaging setup and information extraction based on vegetation indices that could be used to monitor algae cultures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guillaume Lassalle ◽  
Sophie Fabre ◽  
Anthony Credoz ◽  
Rémy Hédacq ◽  
Dominique Dubucq ◽  
...  

AbstractMonitoring plant metal uptake is essential for assessing the ecological risks of contaminated sites. While traditional techniques used to achieve this are destructive, Visible Near-Infrared (VNIR) reflectance spectroscopy represents a good alternative to monitor pollution remotely. Based on previous work, this study proposes a methodology for mapping the content of several metals in leaves (Cr, Cu, Ni and Zn) under realistic field conditions and from airborne imaging. For this purpose, the reflectance of Rubus fruticosus L., a pioneer species of industrial brownfields, was linked to leaf metal contents using optimized normalized vegetation indices. High correlations were found between the vegetation indices exploiting pigment-related wavelengths and leaf metal contents (r ≤ − 0.76 for Cr, Cu and Ni, and r ≥ 0.87 for Zn). This allowed predicting the metal contents with good accuracy in the field and on the image, especially Cu and Zn (r ≥ 0.84 and RPD ≥ 2.06). The same indices were applied over the entire study site to map the metal contents at very high spatial resolution. This study demonstrates the potential of remote sensing for assessing metal uptake by plants, opening perspectives of application in risk assessment and phytoextraction monitoring in the context of trace metal pollution.


2017 ◽  
Vol 27 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Dana Sullivan ◽  
Jing Zhang ◽  
Alexander R. Kowalewski ◽  
Jason B. Peake ◽  
William F. Anderson ◽  
...  

Quantitative spectral reflectance data have the potential to improve the evaluation of turfgrasses in variety trials when management practices are factors in the testing of turf aesthetics and functionality. However, the practical application of this methodology has not been well developed. The objectives of this research were 1) to establish a relationship between spectral reflectance and turfgrass quality (TQ) and percent green cover (PGC) using selected reference plots; 2) to compare aesthetic performance (TQ, PGC, and vegetation indices) and functional performance (surface firmness); and 3) to evaluate lignin content as an alternate means to predict surface firmness in turfgrass variety trials of hybrid bermudagrass [Cynodon dactylon × C. transvaalensis]. A field study was conducted on mature stands of three varieties (‘TifTuf’, ‘TifSport’, and ‘Tifway’) and two experimental lines (04-47 and 04-76) at two mowing heights (0.5 and 1.5 inch) and trinexapac-ethyl application (0.15 kg·ha−1 and nontreated control) treatments. Aesthetic performance was estimated by vegetation indices, spectral reflectance, visual TQ, and PGC. The functional performance of each variety/line was measured through surface firmness and fiber analysis. Regression analyses were similar when using only reference plots or all the plots to determine the relationship between individual aesthetic characteristics. Experimental line 04-47 had lower density in Apr. 2010, whereas varieties ‘TifTuf’, ‘TifSport’, and ‘Tifway’ were in the top statistical group for aesthetic performance when differences were found. ‘TifSport’ and ‘Tifway’ produced the firmest surfaces, followed by ‘TifTuf’, and finally 04-76 and 04-47, which provided the least firm surface. Results of leaf fiber analysis were not correlated with turf surface firmness. This study indicates that incorporating quantitative measures of spectral reflectance could reduce time and improve precision of data collection as long as reference plots with adequate range of green cover are present in the trials.


Sign in / Sign up

Export Citation Format

Share Document