scholarly journals Observing Surface Wave Directional Spectra under Typhoon Megi 2010 using Subsurface EM-APEX Floats

Author(s):  
Je-Yuan Hsu

AbstractEM-APEX floats as autonomous vehicles have been used for profiling temperature, salinity and current velocity for more than a decade. In the traditional method for processing horizontal current velocity from float measurements, signals of surface wave motion are removed as residuals. Here, a new data processing method is proposed for deriving the horizontal velocity of surface waves at the floats. Combined with the vertical acceleration measurements of waves, surface wave directional spectra E(f,θ) can be computed. This method is applied to the float measurements on the right of Typhoon Megi’s track 2010. At 0.6 day before the passage of Megi’s eye to the floats, the fast-propagating swell may affect wind waves forced by the local storm wind. When the storm moves closer to the floats, the increasing wind speed and decreasing angle between wind and dominant wave direction may enhance the wind forcing and form a mono-modal spectrum E(f). The peak frequency fp ~ 0.08 Hz and significant wave height > 10 m are found near the eyewall. After the passage of the eye to the floats, the fp increases to > 0.1 Hz. Although E(f) still has a single spectral peak at the rear-right quadrant of Megi, E(f,θ) at frequencies from 0.08 to 0.12 Hz has waves propagating in three different directions as a tri-modal spectrum, partially due to the swell propagating from the rear-left quadrant. Enhancing the capability of EM-APEX floats to observe wave spectra is critical for exploring the roles of surface waves in the upper ocean dynamics in the future.

2018 ◽  
Vol 35 (5) ◽  
pp. 1053-1075 ◽  
Author(s):  
Je-Yuan Hsu ◽  
Ren-Chieh Lien ◽  
Eric A. D’Asaro ◽  
Thomas B. Sanford

AbstractSeven subsurface Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats measured the voltage induced by the motional induction of seawater under Typhoon Fanapi in 2010. Measurements were processed to estimate high-frequency oceanic velocity variance associated with surface waves. Surface wave peak frequency fp and significant wave height Hs are estimated by a nonlinear least squares fitting to , assuming a broadband JONSWAP surface wave spectrum. The Hs is further corrected for the effects of float rotation, Earth’s geomagnetic field inclination, and surface wave propagation direction. The fp is 0.08–0.10 Hz, with the maximum fp of 0.10 Hz in the rear-left quadrant of Fanapi, which is ~0.02 Hz higher than in the rear-right quadrant. The Hs is 6–12 m, with the maximum in the rear sector of Fanapi. Comparing the estimated fp and Hs with those assuming a single dominant surface wave yields differences of more than 0.02 Hz and 4 m, respectively. The surface waves under Fanapi simulated in the WAVEWATCH III (ww3) model are used to assess and compare to float estimates. Differences in the surface wave spectra of JONSWAP and ww3 yield uncertainties of <5% outside Fanapi’s eyewall and >10% within the eyewall. The estimated fp is 10% less than the simulated before the passage of Fanapi’s eye and 20% less after eye passage. Most differences between Hs and simulated are <2 m except those in the rear-left quadrant of Fanapi, which are ~5 m. Surface wave estimates are important for guiding future model studies of tropical cyclone wave–ocean interactions.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1331 ◽  
Author(s):  
Di Tian ◽  
Han Zhang ◽  
Wenyan Zhang ◽  
Feng Zhou ◽  
Xiujun Sun ◽  
...  

Surface waves induced by tropical cyclones (TCs) play an important role in the air–sea interaction, yet are seldom observed. In the 2017 summer, a wave glider in the northern South China Sea successfully acquired the surface wave parameters when three TCs (Hato, Pakhar, and Mawar) passed though successively. During the three TCs, surface wave period increased from 4–6 s to ~8–10 s and surface wave height increased from 0–1 m to 3–8 m. The number of wave crests observed in a time interval of 1024 s decreased from 100–150 to 60–75. The sea surface roughness, a key factor in determining the momentum transfer between air and sea, increased rapidly during Hato, Pakhar, and Mawar. Surface waves rotated clockwise (anti-clockwise) on the right (left) side of the TC track, and generally propagated to the right side of the local cyclonic tangential direction relative to the TC center. The azimuthal dependence of the wave propagation direction is close to sinusoidal in a region within 50–600 km. The intersection angle between surface wave direction and the local cyclonic tangential direction is generally smallest in the right-rear quadrant of the TC and tends to be largest in the left-rear quadrant. This new set of glider wave observational data proves to be useful for assessing wave forecast products and for improvements in corresponding parameterization schemes.


1972 ◽  
Vol 52 (1) ◽  
pp. 179-191 ◽  
Author(s):  
A. E. Gargettt ◽  
B. A. Hughes

The steady-state interaction between surface waves and long internal waves is investigated theoretically using the radiation stress concepts derived by Longuet-Higgins & Stewart (1964) (or Phillips 1966). It is shown that, over internal wave crests, those surface waves for which cg0cosϕ0 > ci experience a change in direction of propagation towards the line of propagation of the internal waves and their amplitudes are increased. Here cg0 is the surface-wave group speed at U = 0, ϕ0 is the angle between the propagation direction of the surface waves at U = 0 and the propagation direction of the internal waves, and ci is the phase speed of the internal waves. If cg0cos ϕ0 < ci the direction of the surface waves is turned away and their amplitudes are decreased. Over troughs the opposite effects occur.At positions where the local velocity of surface-wave energy transmission measured relative to the internal wave phase velocity is zero, i.e. cg + U − ci = 0, there is a singularity in the energy of the surface waves with resulting infinite amplitudes. It is shown that at these critical positions two wavenumbers which were real and distinct on one side coalesce and become complex on the other. The critical positions are thus shown to be barriers to the propagation of those wave-numbers. It is also shown that there is a critical position representing the coalescence of three wavenumbers. Surface-wave crest configurations are shown for three numerical examples. The frequency and direction of propagation of surface waves that exhibit critical positions somewhere in an internal wave field are shown as a function of the maximum horizontal surface current. This is compared with measurements of wind waves that have been reported elsewhere.


2009 ◽  
Vol 39 (4) ◽  
pp. 1019-1034 ◽  
Author(s):  
Yalin Fan ◽  
Isaac Ginis ◽  
Tetsu Hara

Abstract In this paper, the wind–wave–current interaction mechanisms in tropical cyclones and their effect on the surface wave and ocean responses are investigated through a set of numerical experiments. The key element of the authors’ modeling approach is the air–sea interface model, which consists of a wave boundary layer model and an air–sea momentum flux budget model. The results show that the time and spatial variations in the surface wave field, as well as the wave–current interaction, significantly reduce momentum flux into the currents in the right rear quadrant of the hurricane. The reduction of the momentum flux into the ocean consequently reduces the magnitude of the subsurface current and sea surface temperature cooling to the right of the hurricane track and the rate of upwelling/downwelling in the thermocline. During wind–wave–current interaction, the momentum flux into the ocean is mainly affected by reducing the wind speed relative to currents, whereas the wave field is mostly affected by refraction due to the spatially varying currents. In the area where the current is strongly and roughly aligned with wave propagation direction, the wave spectrum of longer waves is reduced, the peak frequency is shifted to a higher frequency, and the angular distribution of the wave energy is widened.


2020 ◽  
Vol 12 (21) ◽  
pp. 3618
Author(s):  
Stanislav Ermakov ◽  
Vladimir Dobrokhotov ◽  
Irina Sergievskaya ◽  
Ivan Kapustin

The role of wave breaking in microwave backscattering from the sea surface is a problem of great importance for the development of theories and methods on ocean remote sensing, in particular for oil spill remote sensing. Recently it has been shown that microwave radar return is determined by both Bragg and non-Bragg (non-polarized) scattering mechanisms and some evidence has been given that the latter is associated with wave breaking, in particular, with strong breaking such as spilling or plunging. However, our understanding of mechanisms of the action of strong wave breaking on small-scale wind waves (ripples) and thus on the radar return is still insufficient. In this paper an effect of suppression of radar backscattering after strong wave breaking has been revealed experimentally and has been attributed to the wind ripple suppression due to turbulence generated by strong wave breaking. The experiments were carried out in a wind wave tank where a frequency modulated wave train of intense meter-decimeter-scale surface waves was generated by a mechanical wave maker. The wave train was compressed according to the gravity wave dispersion relation (“dispersive focusing”) into a short-wave packet at a given distance from the wave maker. Strong wave breaking with wave crest overturning (spilling) occurred for one or two highest waves in the packet. Short decimeter-centimeter-scale wind waves were generated at gentle winds, simultaneously with the long breaking waves. A Ka-band scatterometer was used to study microwave backscattering from the surface waves in the tank. The scatterometer looking at the area of wave breaking was mounted over the tank at a height of about 1 m above the mean water level, the incidence angle of the microwave radiation was about 50 degrees. It has been obtained that the radar return in the presence of short wind waves is characterized by the radar Doppler spectrum with a peak roughly centered in the vicinity of Bragg wave frequencies. The radar return was strongly enhanced in a wide frequency range of the radar Doppler spectrum when a packet of long breaking waves arrived at the area irradiated by the radar. After the passage of breaking waves, the radar return strongly dropped and then slowly recovered to the initial level. Measurements of velocities in the upper water layer have confirmed that the attenuation of radar backscattering after wave breaking is due to suppression of short wind waves by turbulence generated in the breaking zone. A physical analysis of the effect has been presented.


1971 ◽  
Vol 38 (4) ◽  
pp. 899-905 ◽  
Author(s):  
L. B. Freund

Three-dimensional wave propagation in an elastic half space is considered. The half space is traction free on half its boundary, while the remaining part of the boundary is free of shear traction and is constrained against normal displacement by a smooth, rigid barrier. A time-harmonic surface wave, traveling on the traction free part of the surface, is obliquely incident on the edge of the barrier. The amplitude and the phase of the resulting reflected surface wave are determined by means of Laplace transform methods and the Wiener-Hopf technique. Wave propagation in an elastic half space in contact with two rigid, smooth barriers is then considered. The barriers are arranged so that a strip on the surface of uniform width is traction free, which forms a wave guide for surface waves. Results of the surface wave reflection problem are then used to geometrically construct dispersion relations for the propagation of unattenuated guided surface waves in the guiding structure. The rate of decay of body wave disturbances, localized near the edges of the guide, is discussed.


Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. V115-V128 ◽  
Author(s):  
Ning Wu ◽  
Yue Li ◽  
Baojun Yang

To remove surface waves from seismic records while preserving other seismic events of interest, we introduced a transform and a filter based on recent developments in image processing. The transform can be seen as a weighted Radon transform, in particular along linear trajectories. The weights in the transform are data dependent and designed to introduce large amplitude differences between surface waves and other events such that surface waves could be separated by a simple amplitude threshold. This is a key property of the filter and distinguishes this approach from others, such as conventional ones that use information on moveout ranges to apply a mask in the transform domain. Initial experiments with synthetic records and field data have demonstrated that, with the appropriate parameters, the proposed trace transform filter performs better both in terms of surface wave attenuation and reflected signal preservation than the conventional methods. Further experiments on larger data sets are needed to fully assess the method.


Geophysics ◽  
2021 ◽  
pp. 1-84
Author(s):  
Chunying Yang ◽  
Wenchuang Wang

Irregular acquisition geometry causes discontinuities in the appearance of surface wave events, and a large offset causes seismic records to appear as aliased surface waves. The conventional method of sampling data affects the accuracy of the dispersion spectrum and reduces the resolution of surface waves. At the same time, ”mode kissing” of the low-velocity layer and inhomogeneous scatterers requires a high-resolution method for calculating surface wave dispersion. This study tested the use of the multiple signal classification (MUSIC) algorithm in 3D multichannel and aliased wavefield separation. Azimuthal MUSIC is a useful method to estimate the phase velocity spectrum of aliased surface wave data, and it represent the dispersion spectra of low-velocity and inhomogeneous models. The results of this study demonstrate that mode-kissing affects dispersion imaging, and inhomogeneous scatterers change the direction of surface-wave propagation. Surface waves generated from the new propagation directions are also dispersive. The scattered surface wave has a new dispersion pattern different to that of the entire record. Diagonal loading was introduced to improve the robustness of azimuthal MUSIC, and numerical experiments demonstrate the resultant effectiveness of imaging aliasing surface waves. A phase-matched filter was applied to the results of azimuthal MUSIC, and phase iterations were unwrapped in a fast and stable manner. Aliased surface waves and body waves were separated during this process. Overall, field data demonstrate that azimuthal MUSIC and phase-matched filters can successfully separate aliased surface waves.


2021 ◽  
Author(s):  
Akash Kharita ◽  
Sagarika Mukhopadhyay

&lt;p&gt;The surface wave phase and group velocities are estimated by dividing the epicentral distance by phase and group travel times respectively in all the available methods, this is based on the assumptions that (1) surface waves originate at the epicentre and (2) the travel time of the particular group or phase of the surface wave is equal to its arrival time to the station minus the origin time of the causative earthquake; However, both assumptions are wrong since surface waves generate at some horizontal distance away from the epicentre. We calculated the actual horizontal distance from the focus at which they generate and assessed the errors caused in the estimation of group and phase velocities by the aforementioned assumptions in a simple isotropic single layered homogeneous half space crustal model using the example of the fundamental mode Love wave. We took the receiver locations in the epicentral distance range of 100-1000 km, as used in the regional surface wave analysis, varied the source depth from 0 to 35 Km with a step size of 5 km and did the forward modelling to calculate the arrival time of Love wave phases at each receiver location. The phase and group velocities are then estimated using the above assumptions and are compared with the actual values of the velocities given by Love wave dispersion equation. We observed that the velocities are underestimated and the errors are found to be; decreasing linearly with focal depth, decreasing inversely with the epicentral distance and increasing parabolically with the time period. We also derived empirical formulas using MATLAB curve fitting toolbox that will give percentage errors for any realistic combination of epicentral distance, time period and depths of earthquake and thickness of layer in this model. The errors are found to be more than 5% for all epicentral distances lesser than 500 km, for all focal depths and time periods indicating that it is not safe to do regional surface wave analysis for epicentral distances lesser than 500 km without incurring significant errors. To the best of our knowledge, the study is first of its kind in assessing such errors.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document