scholarly journals A Meteorological Analysis of Important Contributors to the 1999–2005 Canadian Prairie Drought

2013 ◽  
Vol 141 (10) ◽  
pp. 3593-3609 ◽  
Author(s):  
Lisa M. Hryciw ◽  
Eyad H. Atallah ◽  
Shawn M. Milrad ◽  
John R. Gyakum

Abstract Drought is a complex natural hazard that is endemic to the Canadian prairies. The 1999–2005 Canadian prairie drought, which had great socioeconomic impacts, was meteorologically unique in that it did not conform to the traditional persistent positive Pacific–North American (PNA) pattern and west coast ridging paradigm normally associated with prairie drought. The purpose of this study is to diagnose the unique synoptic-scale mechanisms responsible for modulating subsidence during this drought. Using 30-day running means of the percent of normal precipitation from station data, key severe dry periods during 1999–2005 are identified. Analysis of the mean fields from reanalysis data shows that these dry events can be grouped into three upper-level flow categories: amplified warm, amplified cold, and zonal. Amplified warm cases match the traditional ridging paradigm, while amplified cold and zonal cases elucidate the fact that cold-air advection and downsloping flow, respectively, can also be important subsidence mechanisms during a Canadian prairie drought. In all, the 1999–2005 drought was more meteorologically complex on the synoptic scale than previous historic prairie droughts. Finally, a brief historical perspective shows that the drought was centered in 2001–02 and was not as severe as historical droughts, suggesting that societal vulnerability also played a substantial role in the impacts of the 1999–2005 drought.

2021 ◽  
Author(s):  
S. Mubashshir Ali ◽  
Olivia Martius ◽  
Matthias Röthlisberger

<p>Upper-level synoptic-scale Rossby wave packets are well-known to affect surface weather. When these Rossby wave packets occur repeatedly in the same phase at a specific location, they can result in persistent hot, cold, dry, and wet conditions. The repeated and in-phase occurrence of Rossby wave packets is termed as recurrent synoptic-scale Rossby wave packets (RRWPs). RRWPs result from multiple transient synoptic-scale wave packets amplifying in the same geographical region over several weeks.</p><p>Our climatological analyses using reanalysis data have shown that RRWPs can significantly modulate the persistence of hot, cold, dry, and wet spells in several regions in the Northern and the Southern Hemisphere.  RRWPs can both shorten or extend hot, cold, and dry spell durations. The spatial patterns of statistically significant links between RRWPs and spell durations are distinct for the type of the spell (hot, cold, dry, or wet) and the season (MJJASO or NDJFMA). In the Northern Hemisphere, the spatial patterns where RRWPs either extend or shorten the spell durations are wave-like. In the Southern Hemisphere, the spatial patterns are either wave-like (hot and cold spells) or latitudinally banded (dry and wet spells).</p><p>Furthermore, we explore the atmospheric drivers behind RRWP events. This includes both the background flow and potential wave-triggers such as the Madden Julian Oscillation or blocking. For 100 events of intense Rossby wave recurrence in the Atlantic, the background flow, the intensity of tropical convection, and the occurrence of blocking are studied using flow composites.</p>


2016 ◽  
Vol 73 (9) ◽  
pp. 3641-3657 ◽  
Author(s):  
Peter Hitchcock ◽  
Isla R. Simpson

Abstract The equatorward shift of the zonal-mean midlatitude tropospheric jet following a stratospheric sudden warming in a comprehensive stratosphere-resolving model is found to be well quantified by the simple model of tropospheric eddy feedbacks proposed by Lorenz and Hartmann. This permits a decomposition of the shift into a component driven by the stratospheric anomalies and a component driven by tropospheric feedbacks. This is done by extending the simple model to include three effective forcing mechanisms by which the stratosphere may influence the tropospheric jet. These include 1) the zonally symmetric adjustments associated with the mean meridional circulation and the direct influence of the stratospheric anomalies on 2) the tropospheric synoptic-scale or 3) the tropospheric planetary-scale eddies. Although the anomalous tropospheric winds are primarily maintained against surface friction by the synoptic-scale eddies, this response can be entirely attributed to the eddy feedback term. The response of the planetary-scale eddies, in contrast, can be directly attributed to the stratosphere. The zonally symmetric tropospheric circulation associated with downward control is found to play little role in driving the tropospheric response. The prospects of applying this methodology to reanalysis data are also considered, but statistical limitations and the relatively weak projection of the vertically integrated composite wind anomalies onto the leading EOF preclude any conclusions from being drawn.


2015 ◽  
Vol 96 (7) ◽  
pp. 1089-1096 ◽  
Author(s):  
James P. Kossin

Abstract Temperatures in the upper troposphere of the atmosphere, near the tropopause, play a key role in the evolution of tropical cyclones (TC) by controlling their potential intensity (PI), which describes the thermodynamically based maximum TC intensity that the environment will support. Accurately identifying past trends in PI is critical for understanding the causes of observed changes in TC intensity, but calculations of PI trends using different atmospheric reanalysis products can give very different results, largely due to differences in their representation of upper-tropospheric temperatures. Without a means to verify the fidelity of the upper-tropospheric temperatures, PI trends calculated from these products are very uncertain. Here, a method is introduced to validate the upper-tropospheric temperatures in the reanalysis products by using the TCs themselves as thermometers. Using a 30-yr global dataset of TC cloud-top temperatures and three widely utilized atmospheric reanalysis products—Modern-Era Retrospective Analysis for Research and Applications (MERRA), ECMWF interim reanalysis (ERA-Interim), and NCEP–NCAR Global Reanalysis 1—it is shown that storm-local upper-level temperatures in the MERRA and ERA-Interim data vary similarly to the TC cloud-top temperatures on both interannual and decadal time scales, but the NCEP–NCAR data have substantial biases that introduce an increasing trend in storm-local PI not found in the other two products. The lack of global storm-local PI trends is due to a balance between temporal increases in the mean state and the poleward migration of TCs into lower climatological PI, and it has significant implications for the detection and attribution of mean TC intensity trends.


2015 ◽  
Vol 28 (17) ◽  
pp. 6823-6840 ◽  
Author(s):  
Froila M. Palmeiro ◽  
David Barriopedro ◽  
Ricardo García-Herrera ◽  
Natalia Calvo

Abstract Sudden stratospheric warmings (SSWs) are characterized by a pronounced increase of the stratospheric polar temperature during the winter season. Different definitions have been used in the literature to diagnose the occurrence of SSWs, yielding discrepancies in the detected events. The aim of this paper is to compare the SSW climatologies obtained by different methods using reanalysis data. The occurrences of Northern Hemisphere SSWs during the extended-winter season and the 1958–2014 period have been identified for a suite of eight representative definitions and three different reanalyses. Overall, and despite the differences in the number and exact dates of occurrence of SSWs, the main climatological signatures of SSWs are not sensitive to the considered reanalysis. The mean frequency of SSWs is 6.7 events decade−1, but it ranges from 4 to 10 events, depending on the method. The seasonal cycle of events is statistically indistinguishable across definitions, with a common peak in January. However, the multidecadal variability is method dependent, with only two definitions displaying minimum frequencies in the 1990s. An analysis of the mean signatures of SSWs in the stratosphere revealed negligible differences among methods compared to the large case-to-case variability within a given definition. The stronger and more coherent tropospheric signals before and after SSWs are associated with major events, which are detected by most methods. The tropospheric signals of minor SSWs are less robust, representing the largest source of discrepancy across definitions. Therefore, to obtain robust results, future studies on stratosphere–troposphere coupling should aim to minimize the detection of minor warmings.


2017 ◽  
Author(s):  
Claudia Christine Stephan ◽  
Nicholas P. Klingaman ◽  
Pier Luigi Vidale ◽  
Andrew G. Turner ◽  
Marie-Estelle Demory ◽  
...  

Abstract. Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyze the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ~ 200, 90, and 40 km in the zonal direction at the equator, respectively) are analyzed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China, but improve with finer resolution and coupling. Empirical Orthogonal Teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal-mean timeseries. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.


Fluids ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 147 ◽  
Author(s):  
Fernand Assene ◽  
Yves Morel ◽  
Audrey Delpech ◽  
Micael Aguedjou ◽  
Julien Jouanno ◽  
...  

In this paper, we analyse the results from a numerical model at high resolution. We focus on the formation and maintenance of subsurface equatorial currents in the Gulf of Guinea and we base our analysis on the evolution of potential vorticity (PV). We highlight the link between submesoscale processes (involving mixing, friction and filamentation), mesoscale vortices and the mean currents in the area. In the simulation, eastward currents, the South and North Equatorial Undercurrents (SEUC and NEUC respectively) and the Guinea Undercurrent (GUC), are shown to be linked to the westward currents located equatorward. We show that east of 20° W, both westward and eastward currents are associated with the spreading of PV tongues by mesoscale vortices. The Equatorial Undercurrent (EUC) brings salty waters into the Gulf of Guinea. Mixing diffuses the salty anomaly downward. Meridional advection, mixing and friction are involved in the formation of fluid parcels with PV anomalies in the lower part and below the pycnocline, north and south of the EUC, in the Gulf of Guinea. These parcels gradually merge and vertically align, forming nonlinear anticyclonic vortices that propagate westward, spreading and horizontally mixing their PV content by stirring filamentation and diffusion, up to 20° W. When averaged over time, this creates regions of nearly homogeneous PV within zonal bands between 1.5° and 5° S or N. This mean PV field is associated with westward and eastward zonal jets flanking the EUC with the homogeneous PV tongues corresponding to the westward currents, and the strong PV gradient regions at their edges corresponding to the eastward currents. Mesoscale vortices strongly modulate the mean fields explaining the high spatial and temporal variability of the jets.


10.3823/2465 ◽  
2017 ◽  
Vol 10 ◽  
Author(s):  
Rosana Alves de Melo ◽  
Flávia Emília Cavalcante Valença Fernandes ◽  
Ana Kariny Costa Araújo ◽  
Nadja Maria dos Santos ◽  
Maria Elda Alves de Lacerda Campos ◽  
...  

Objective: To evaluate the neonatal morbidity due to congenital malformations in the city of Petrolina-PE, from 2008 to 2013. Methods: A descriptive study with data from the Information System on Live Births (Sinasc). The analyzes were carried out through frequency distribution and measures of central tendency and dispersion. The associations were tested by the Pearson and Kruskal Wallis chi-square tests. Significance was set at 5% and 95% confidence. Results: 436 cases of congenital malformations were recorded in the study period, with 2011 being the highest occurrence year. The mothers of the newborns were young (25.2 years old), single, upper level of education and household. In general multiparous, with single gestation, vaginal delivery and performed up to six prenatal visits. The newborns were males, at 39 weeks or more of gestation and with normal weight (> = 2500g). The malformations of the musculoskeletal system were the most frequent followed by the genitourinary system. Congenital malformations were especially associated with neonatal characteristics such as gender and weight. In all causes the mean weight was greater than 2500g (p <0.05). The causes of malformation of greater occurrence in both sexes were osteomuscular (p <0.05). The aspects of the mother did not present significant differences in the present study (p> 0.05). Conclusion: The present study evidenced relevant aspects in the occurrence of morbidities due to congenital malformations, directing to a greater attention the occurrence of these diseases especially in relation to the newborn.


2022 ◽  
Author(s):  
Valerio Lembo ◽  
Federico Fabiano ◽  
Vera Melinda Galfi ◽  
Rune Graversen ◽  
Valerio Lucarini ◽  
...  

Abstract. The extratropical meridional energy transport in the atmosphere is fundamentally intermittent in nature, having extremes large enough to affect the net seasonal transport. Here, we investigate how these extreme transports are associated with the dynamics of the atmosphere at multiple scales, from planetary to synoptic. We use ERA5 reanalysis data to perform a wavenumber decomposition of meridional energy transport in the Northern Hemisphere mid-latitudes during winter and summer. We then relate extreme transport events to atmospheric circulation anomalies and dominant weather regimes, identified by clustering 500 hPa geopotential height fields. In general, planetary-scale waves determine the strength and meridional position of the synoptic-scale baroclinic activity with their phase and amplitude, but important differences emerge between seasons. During winter, large wavenumbers (k = 2 − 3) are key drivers of the meridional energy transport extremes, and planetary and synoptic-scale transport extremes virtually never co-occur. In summer, extremes are associated with higher wavenumbers (k = 4 − 6), identified as synoptic-scale motions. We link these waves and the transport extremes to recent results on exceptionally strong and persistent co-occurring summertime heat waves across the Northern Hemisphere mid-latitudes. We show that these events are typical, in terms of dominant regime patterns associated with extremely strong meridional energy transports.


2010 ◽  
Vol 23 (12) ◽  
pp. 3222-3233 ◽  
Author(s):  
Xuejuan Ren ◽  
Xiuqun Yang ◽  
Cuijiao Chu

Abstract Seasonal variations of the synoptic-scale transient eddy activity (STEA) and the jet streams over East Asia are examined through analysis of the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data. Extracted from the 6-hourly upper-level wind fields, the distribution of the jet core numbers exhibits a distinct geographical border for the East Asian subtropical jet (EASJ) and the East Asian polar front jet (EAPJ) at the latitudes of the northern Tibetan Plateau (TP). In the cool seasons, two branches of the STEA and low-level baroclinicity exist over the East Asian landmass, accompanied by the two-jet state of the EASJ and EAPJ. In the warm seasons, a single jet pattern of the EASJ along the north flank of the TP is accompanied by the weakened STEA over the mid- to high latitudes of East Asia. Further analysis shows two distinct features of the seasonal variations of the STEA over East Asia, compared with that over the North Pacific. First, during the transitional period of April–June, the main STEA band over East Asia migrates northward dramatically, in conjunction with the EAPJ shifting in the same direction. Second, both the upper-level STEA and the lower-level baroclinicity poleward of the TP are prosperous in spring. The relationship between the STEA, baroclinicity, vertical wind shear, and static stability in the EAPJ region in different seasons is further investigated. It is found that in addition to the time-mean wind fields, the rapid increase in the sensible heat flux poleward side of the TP region in spring and the associated boundary layer processes are partially responsible for the spring prosperity of the local baroclinicity and the STEA.


2018 ◽  
Vol 27 (12) ◽  
pp. 1840001 ◽  
Author(s):  
Anthony W. Thomas

In the 35 years since the European Muon Collaboration announced the astonishing result that the valence structure of a nucleus was very different from that of a free nucleon, many explanations have been suggested. The first of the two most promising explanations is based upon the different effects of the strong Lorentz scalar and vector mean fields known to exist in a nucleus on the internal structure of the nucleon-like clusters which occupy shell model states. The second links the effect to the modification of the structure of nucleons involved in short-range correlations, which are far off their mass shell. We explore some of the methods which have been proposed to give complementary information on this puzzle, especially the spin-dependent EMC effect and the isovector EMC effect, both proposed by Cloët, Bentz and Thomas. It is shown that the predictions for the spin-dependent EMC effect, in particular, differ substantially within the mean-field and short-range correlation approaches. Hence, the measurement of the spin-dependent EMC effect at Jefferson Lab should give us a deeper understanding of the origin of the EMC effect and, indeed, of the structure of atomic nuclei.


Sign in / Sign up

Export Citation Format

Share Document