scholarly journals Observed Hurricane Wind Speed Asymmetries and Relationships to Motion and Environmental Shear

2014 ◽  
Vol 142 (3) ◽  
pp. 1290-1311 ◽  
Author(s):  
Eric W. Uhlhorn ◽  
Bradley W. Klotz ◽  
Tomislava Vukicevic ◽  
Paul D. Reasor ◽  
Robert F. Rogers

Abstract Wavenumber-1 wind speed asymmetries in 35 hurricanes are quantified in terms of their amplitude and phase, based on aircraft observations from 128 individual flights between 1998 and 2011. The impacts of motion and 850–200-mb environmental vertical shear are examined separately to estimate the resulting asymmetric structures at the sea surface and standard 700-mb reconnaissance flight level. The surface asymmetry amplitude is on average around 50% smaller than found at flight level, and while the asymmetry amplitude grows in proportion to storm translation speed at the flight level, no significant growth at the surface is observed, contrary to conventional assumption. However, a significant upwind storm-motion-relative phase rotation is found at the surface as translation speed increases, while the flight-level phase remains fairly constant. After removing the estimated impact of storm motion on the asymmetry, a significant residual shear direction-relative asymmetry is found, particularly at the surface, and, on average, is located downshear to the left of shear. Furthermore, the shear-relative phase has a significant downwind rotation as shear magnitude increases, such that the maximum rotates from the downshear to left-of-shear azimuthal location. By stratifying observations according to shear-relative motion, this general pattern of a left-of-shear residual wind speed maximum is found regardless of the orientation between the storm’s heading and shear direction. These results are quite consistent with recent observational studies relating western Pacific typhoon wind asymmetries to environmental shear. Finally, changes in wind asymmetry over a 5-day period during Hurricane Earl (2010) are analyzed to understand the combined impacts of motion and the evolving shear.

Author(s):  
Masafumi KIMIZUKA ◽  
Tomotsuka TAKAYAMA ◽  
Hiroyasu KAWAI ◽  
Masafumi MIYATA ◽  
Katsuya HIRAYAMA ◽  
...  

2013 ◽  
Vol 28 (1) ◽  
pp. 159-174 ◽  
Author(s):  
Craig Miller ◽  
Michael Gibbons ◽  
Kyle Beatty ◽  
Auguste Boissonnade

Abstract In this study the impacts of the topography of Bermuda on the damage patterns observed following the passage of Hurricane Fabian over the island on 5 September 2003 are considered. Using a linearized model of atmospheric boundary layer flow over low-slope topography that also incorporates a model for changes of surface roughness, sets of directionally dependent wind speed adjustment factors were calculated for the island of Bermuda. These factors were then used in combination with a time-stepping model for the open water wind field of Hurricane Fabian derived from the Hurricane Research Division Real-Time Hurricane Wind Analysis System (H*Wind) surface wind analyses to calculate the maximum 1-min mean wind speed at locations across the island for the following conditions: open water, roughness changes only, and topography and roughness changes combined. Comparison of the modeled 1-min mean wind speeds and directions with observations from a site on the southeast coast of Bermuda showed good agreement between the two sets of values. Maximum open water wind speeds across the entire island showed very little variation and were of category 2 strength on the Saffir–Simpson scale. While the effects of surface roughness changes on the modeled wind speeds showed very little correlation with the observed damage, the effect of the underlying topography led to maximum modeled wind speeds of category 4 strength being reached in highly localized areas on the island. Furthermore, the observed damage was found to be very well correlated with these regions of topographically enhanced wind speeds, with a very clear trend of increasing damage with increasing wind speeds.


Eos ◽  
2000 ◽  
Vol 81 (38) ◽  
pp. 433 ◽  
Author(s):  
Richard J. Mumane ◽  
Chris Barton ◽  
Eric Collins ◽  
Jeffrey Donnelly ◽  
James Eisner ◽  
...  
Keyword(s):  

2020 ◽  
Vol 12 (21) ◽  
pp. 3610
Author(s):  
Song Yang ◽  
Richard Bankert ◽  
Joshua Cossuth

The satellite passive microwave (PMW) sensor brightness temperatures (TBs) of all tropical cyclones (TCs) from 1987–2012 have been carefully calibrated for inter-sensor frequency differences, center position fixing using the Automated Rotational Center Hurricane Eye Retrieval (ARCHER) scheme, and application of the Backus–Gilbert interpolation scheme for better presentation of the TC horizontal structure. With additional storm motion direction and the 200–850 hPa wind shear direction, a unique and comprehensive TC database is created for this study. A reliable and detailed climatology for each TC category is analyzed and discussed. There is significant annual variability of the number of storms at hurricane intensity, but the annual number of all storms is relatively stable. Results based on the analysis of the 89 GHz horizontal polarization TBs over oceans are presented in this study. An eyewall contraction is clearly displayed with an increase in TC intensity. Three composition schemes are applied to present a reliable and detailed TC climatology at each intensity category and its geographic characteristics. The global composition relative to the North direction is not able to lead a realistic structure for an individual TC. Enhanced convection in the down-motion quadrants relative to direction of TC motion is obvious for Cat 1–3 TCs, while Cat 4–5 TCs still have a concentric pattern of convection within 200 km radius. Regional differences are evident for weak storms. Results indicate the direction of TC movement has more impact on weak storms than on Cat 4–5 TCs. A striking feature is that all TCs have a consistent pattern of minimum TBs at 89 GHz in the downshear left quadrant (DSLQ) for the northern hemisphere basins and in the downshear right quadrant (DSRQ) for the southern hemisphere basin, regarding the direction of the 200–850 hPa wind shear. Tropical depression and tropical storm have the minimum TBs in the downshear quadrants. The axis of the minimum TBs is slightly shifted toward the vertical shear direction. There is no geographic variation of storm structure relative to the vertical wind shear direction except over the southern hemisphere which shows a mirror image of the storm structure over the northern hemisphere. This study indicates that regional variation of storm structure relative to storm motion direction is mainly due to differences of the vertical wind shear direction among these basins. Results demonstrate the direction of the 200–850 hPa wind shear plays a critical role in TC structure.


2021 ◽  
Author(s):  
Tianyu Qin ◽  
Yu Hao ◽  
Juan He

Abstract Background: Although the occurrence of some infectious diseases including TB was found to be associated with specific weather factors, few studies have incorporated weather factors into the model to predict the incidence of tuberculosis (TB). We aimed to establish an accurate forecasting model using TB data in Guangdong Province, incorporating local weather factors.Methods: Data of sixteen meteorological variables (2003-2016) and the TB incidence data (2004-2016) of Guangdong were collected. Seasonal autoregressive integrated moving average (SARIMA) model was constructed based on the data. SARIMA model with weather factors as explanatory variables (SARIMAX) was performed to fit and predict TB incidence in 2017. Results: Maximum temperature, maximum daily rainfall, minimum relative humidity, mean vapor pressure, extreme wind speed, maximum atmospheric pressure, mean atmospheric pressure and illumination duration were significantly associated with log(TB incidence). After fitting the SARIMAX model, maximum pressure at lag 6 (β= -0.007, P < 0.05, 95% confidence interval (CI): -0.011, -0.002, mean square error (MSE): 0.279) was negatively associated with log(TB incidence), while extreme wind speed at lag 5 (β=0.009, P < 0.05, 95% CI: 0.005, 0.013, MSE: 0.143) was positively associated. SARIMAX (1, 1, 1) (0, 1, 1)12 with extreme wind speed at lag 5 was the best predictive model with lower Akaike information criterion (AIC) and MSE. The predicted monthly TB incidence all fall within the confidence intervals using this model. Conclusions: Weather factors have different effects on TB incidence in Guangdong. Incorporating meteorological factors into the model increased the accuracy of prediction.


Author(s):  
Santi Triwijaya ◽  
Arief Darmawan ◽  
Andri Pradipta ◽  
Dara Aulia Feriando

A cable car is a hanging car that runs by cable. Cable car carrier controlled by DC motor. The cable car can be a solution to accommodate the mobilization of agricultural commodities in areas that are difficult to access while still paying attention to safety and reliability. In this research, the speed of a cable car would be automatically controlled with Programmable Logic Control (PLC). PLC functions as a cable car operation controller by considering 3 parameters, namely: wind speed, maximum load weight, and distance (meters). The speed of the cable car is controlled by the PLC using fuzzy logic. Cable car speed is based on parameters of wind speed, load weight and distance. From the results obtained, the PLC has worked well in regulating the speed of the cable car and if any parameter exceeds the PLC limit, it can turn off the cable car.


2021 ◽  
pp. 117-129
Author(s):  
V. V. VOLKOV ◽  
◽  
M. A. STRUNIN ◽  
A. M. STRUNIN ◽  
◽  
...  

The results of the development and comparative analysis of methods for determining wind shear in the atmosphere (regression and difference ones) based on research aircraft data are presented. It is shown that shear calculation by the regression method gives the error of 0.002-0.006 (m/s)/km (depending on the length of the measurement sections) for horizontal shears and 0.04-0.12 (m/s)/100 m for vertical shears; the respective error of the difference method is 0.007 (m/s)/km and 0.07 (m/s)/100 m. Based on the Yak-42D “Roshydromet” research aircraft data, the values of shears of two horizontal components of wind speed in three directions (two horizontal and vertical) were calculated. According to the data of two research aircraft flights, the maximum values of the horizontal shear of wind speed components were reached above the boundary layer and were equal to 0.2 (m/s)/km, and the vertical shear was 1.2 (m/s)/100 m. The energy profiles of horizontal and vertical turbulent pulsations are constructed, it is shown that intense turbulence smooths wind shears in the convective atmospheric boundary layer.


Author(s):  
Buo-Fu Chen ◽  
Christopher A. Davis ◽  
Ying-Hwa Kuo

AbstractIdealized numerical studies have suggested that in addition to vertical wind shear (VWS) magnitude, the VWS profile also affects tropical cyclone (TC) development. A way to further understand the VWS profile’s effect is to examine the interaction between a TC and various shear-relative low-level mean flow (LMF) orientations. This study mainly uses the ERA5 reanalysis to verify that, consistent with idealized simulations, boundary-layer processes associated with different shear-relative LMF orientations affect real-world TC’s intensity and size. Based on analyses of 720 TCs from multiple basins during 2004–2016, a TC affected by an LMF directed toward downshear-left in the Northern Hemisphere favors intensification, whereas an LMF directed toward upshear-right is favorable for expansion. Furthermore, physical processes associated with shear-relative LMF orientation may also partly explain the relationship between the VWS direction and TC development, as there is a correlation between the two variables.The analysis of reanalysis data provides other new insights. The relationship between shear-relative LMF and intensification is not significantly modified by other factors [inner-core sea surface temperature (SST), VWS magnitude, and relative humidity (RH)]. However, the relationship regarding expansion is partly attributed to environmental SST and RH variations for various LMF orientations. Moreover, SST is critical to the basin-dependent variability of the relationship between the shear-relative LMF and intensification. For Atlantic TCs, the relationship between LMF orientation and intensification is inconsistent with all-basin statistics unless the analysis is restricted to a representative subset of samples associated with generally favorable conditions.


2020 ◽  
Vol 59 (3) ◽  
pp. 567-588 ◽  
Author(s):  
Martina Bramberger ◽  
Andreas Dörnbrack ◽  
Henrike Wilms ◽  
Florian Ewald ◽  
Robert Sharman

AbstractStrong turbulence was encountered by the German High-Altitude Long-Range Research Aircraft (HALO) at flight level 430 (13.8 km) on 13 October 2016 above Iceland. In this event the turbulence caused altitude changes of the research aircraft of about 50 m within a period of approximately 15 s. Additionally, the automatic thrust control of the HALO could not control the large gradients in the horizontal wind speed and, consequently, the pilot had to switch off this system. Simultaneously, the French Falcon of Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE), flying 2 km below HALO, also encountered turbulence at almost the same location. On that day, mountain-wave (MW) excitation and propagation was favored by the alignment of strong surface winds and the polar front jet. We use a combination of in situ observations, ECMWF and empirical turbulence forecasts, and high-resolution simulations to characterize the observed turbulent event. These show that a pronounced negative vertical shear of the horizontal wind favored overturning and breaking of MWs in the area of the encountered turbulence. The turbulent region was tilted upstream and extended over a distance of about 2 km in the vertical. The analyses suggest that HALO was flying through the center of a breaking MW field while the French Falcon encountered the lower edge of this region. Surprisingly, the pronounced gradients in the horizontal wind speeds leading to the deactivation of the automatic thrust control were located north of the breaking MW field. In this area, our analysis suggests the presence of gravity waves that could have generated the encountered modulation of the horizontal wind field.


Sign in / Sign up

Export Citation Format

Share Document