scholarly journals The Inland Eyewall Reintensification of Typhoon Fanapi (2010) Documented from an Observational Perspective Using Multiple-Doppler Radar and Surface Measurements

2015 ◽  
Vol 144 (1) ◽  
pp. 241-261 ◽  
Author(s):  
Yu-Chieng Liou ◽  
Tai-Chi Chen Wang ◽  
Pei-Yu Huang

Abstract This study documents observational changes in the eyewall of Typhoon Fanapi (2010) after landfall in Taiwan. The observations indicate that Fanapi’s eye and eyewall disappeared on the eastern side of Taiwan’s Central Mountain Range (CMR) after landfall, but reemerged on the western side of CMR. The cyclonic circulation, increasing wind speed, a low-level low pressure and high temperature zone, the associated updrafts and downdrafts, and surface pressure and rainfall measurements all support the existence of a reintensified eyewall. The storm slowed down during the redeveloping stage, thus prolonging the rainfall duration over Taiwan. On the western side of CMR a northwest–southeast-oriented rainband formed at an earlier stage, possibly due to the large-scale interaction between Fanapi’s remnant flow and the environment. However, the subsequent reintensification might be attributed to the interaction between the circulation and topography. This is supported by the finding that adjacent to CMR, strong wind develops vertically from lower levels, indicating that the reintensification appears to be initiated through a bottom-up process. A vorticity budget analysis shows that at lower layers the stretching mechanism plays a leading role in increasing positive vorticity, followed by the contributions from tilting and horizontal advection. The horizontal advection plays a comparable role to the vertical advection in increasing low- to midlevel vorticity. The vertical advection aloft is responsible for transporting the vorticity upward. Finally, this research provides a relatively rare documentation of the vortical hot towers (VHTs) over terrain using ground-based radars, in contrast to most previous studies focusing on maritime VHTs using simulations or aircraft measurements.

2016 ◽  
Vol 73 (2) ◽  
pp. 743-759 ◽  
Author(s):  
Yukari Sumi ◽  
Hirohiko Masunaga

Abstract A moist static energy (MSE) budget analysis is applied to quasi-2-day waves to examine the effects of thermodynamic processes on the wave propagation mechanism. The 2-day waves are defined as westward inertia–gravity (WIG) modes identified with filtered geostationary infrared measurements, and the thermodynamic parameters and MSE budget variables computed from reanalysis data are composited with respect to the WIG peaks. The composite horizontal and vertical MSE structures are overall as theoretically expected from WIG wave dynamics. A prominent horizontal MSE advection is found to exist, although the wave dynamics is mainly regulated by vertical advection. The vertical advection decreases MSE around the times of the convective peak, plausibly resulting from the first baroclinic mode associated with deep convection. Normalized gross moist stability (NGMS) is used to examine the thermodynamic processes involving the large-scale dynamics and convective heating. NGMS gradually decreases to zero before deep convection and reaches a maximum after the convection peak, where low (high) NGMS leads (lags) deep convection. The decrease in NGMS toward zero before the occurrence of active convection suggests an increasingly efficient conversion from convective heating to large-scale dynamics as the wave comes in, while the increase afterward signifies that this linkage swiftly dies out after the peak.


2021 ◽  
Author(s):  
Chia-Lun Tsai ◽  
Kwonil Kim ◽  
Yu-Chieng Liou ◽  
Jung-Hoon Kim ◽  
YongHee Lee ◽  
...  

Abstract. A strong downslope wind event under fine weather condition on 13–15 February 2018 was examined by various observational and high resolution reanalysis datasets during the 2018 Winter Olympic and Paralympic games in Pyeongchang, Korea. High spatio-temporal resolution of wind information was obtained by Doppler lidars, automatic weather stations (AWS), wind profiler, and sounding observations under the International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games (ICE-POP 2018). This study aimed to understand the possible generation mechanisms of localized strong wind event across high mountainous areas and in the lee side of mountains associated with the underlying large-scale pattern of a low-pressure system (LPS). The spatial distribution of linear trends for surface wind shows different patterns, exhibiting increased trend in the lee side and a persistent one in mountainous areas with the approaching LPS. Surface wind speed was intensified dramatically from ~3 to ~12 m s−1 (gust was stronger than 20 m s−1 above ground) at a surface station in the lee side (named as GWW). However, the mountainous station at DGW site appeared to have a persistently strong wind (~10 m s−1) during the research period. Budget analysis of horizontal momentum equation and local reanalysis data suggests that the pressure gradient force (PGF) derived by adiabatic warming along the downslope and subsequent hydraulic jump in the lee side of mountains was a main factor in the acceleration of the surface wind at the GWW site. Detailed analysis of the retrieved 3D winds reveals that the PGF also dominate at the DGW site, which causes the persistent strong wind that is related to the channeling effect across the valley areas in the mountain range. The observational evidence presented here shows that the different mechanisms in local areas under the same synoptic condition with LPS are important references in determining the strength and persistence of the orographic-induced strong winds under fine weather condition.


2007 ◽  
Vol 1 (1) ◽  
pp. 271-301
Author(s):  
W. J. van de Berg ◽  
M. R. van den Broeke ◽  
E. van Meijgaard

Abstract. Output from the regional climate model RACMO2/ANT is used to calculate the heat budget of the Antarctic atmospheric boundary layer (ABL). The main feature of the wintertime Antarctic ABL is a persistent temperature deficit compared to the free atmosphere. The magnitude of this deficit is controlled by the heat budget. During winter, transport of heat towards the surface by turbulence and net longwave emission are the primary ABL cooling terms. These processes show horizontal spatial variability only on continental scales. Vertical and horizontal advection of heat are the main warming terms. Over regions with convex ice sheet topography, i.e. domes and ridges, warming by downward vertical advection is enhanced due to divergence of the ABL wind field. Horizontal advection balances any excess warming caused by vertical advection, hence the ABL over domes and ridges tends to have a relatively weak temperature deficit. Conversely, vertical advection is reduced in regions with concave topography, i.e. valleys, where the ABL temperature deficit is enlarged. Along the coast, horizontal and vertical advection is governed by the inability of the large-scale circulation to adapt to small scale topographic features. Meso-scale (~10 km) topographic structures have thus a strong impact on the ABL winter temperature, besides latitude and surface elevation. During summer, this mechanism is much weaker; and the horizontal variability of ABL temperatures is smaller.


2017 ◽  
Vol 145 (5) ◽  
pp. 1691-1716 ◽  
Author(s):  
Ching-Yuang Huang ◽  
You Zhang ◽  
William C. Skamarock ◽  
Li-Huan Hsu

Abstract Influences of large-scale flow variations on the track evolution of two typhoons, moderate Morakot (2009) and superintense Megi (2010), are investigated using the global variable-resolution model MPAS with a higher-resolution region of 15 km for the simulated typhoons. For Morakot, the associated track and extreme rainfall over southern Taiwan captured by MPAS compared well with the regional WRF simulations. To isolate the influences of various large-scale flows, three modes are filtered out from global reanalysis: the synoptic-scale mode, quasi-biweekly oscillation (QBW) mode, and the Madden–Julian oscillation (MJO) mode. In the absence of QBW or MJO, the simulated Morakot moves westward across Taiwan without the observed north turn after landfall. When the intensity of the MJO mode is increased by 50% in the experiment (MJO+50%), a much earlier northward turn is induced. The simulated Morakot under the observed MJO lies in between MJO+50% and MJO−50% results. The MJO variations also show similar impacts on the track evolution of Typhoon Megi. The wavenumber-1 decompositions of vorticity budget terms are shown to highlight important contributions to the vorticity tendency and typhoon translation with and without the MJO. The northward turn of both typhoons in the presence of the MJO is mainly in response to positive horizontal vorticity advection to the north of the typhoon center. However, vorticity tilting is relatively more important for Morakot due to its slantwise structure. Furthermore, positive vorticity stretching and vertical advection are significant in the vicinity of southern Taiwan due to the effects of the Central Mountain Range and tend to retard the departing Morakot.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yahya Darmawan ◽  
Huang-Hsiung Hsu ◽  
Jia-Yuh Yu

This study aims to explore the contrasting characteristics of large-scale circulation that led to the precipitation anomalies over the northern parts of Sumatra Island. Further, the impact of varying the Asian–Australian Monsoon (AAM) was investigated for triggering the precipitation variability over the study area. The moisture budget analysis was applied to quantify the most dominant component that induces precipitation variability during the JJA (June, July, and August) period. Then, the composite analysis and statistical approach were applied to confirm the result of the moisture budget. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Anaysis Interim (ERA-Interim) from 1981 to 2016, we identified 9 (nine) dry and 6 (six) wet years based on precipitation anomalies, respectively. The dry years (wet years) anomalies over the study area were mostly supported by downward (upward) vertical velocity anomaly instead of other variables such as specific humidity, horizontal velocity, and evaporation. In the dry years (wet years), there is a strengthening (weakening) of the descent motion, which triggers a reduction (increase) of convection over the study area. The overall downward (upward) motion of westerly (easterly) winds appears to suppress (support) the convection and lead to negative (positive) precipitation anomaly in the whole region but with the largest anomaly over northern parts of Sumatra. The AAM variability proven has a significant role in the precipitation variability over the study area. A teleconnection between the AAM and other global circulations implies the precipitation variability over the northern part of Sumatra Island as a regional phenomenon. The large-scale tropical circulation is possibly related to the PWC modulation (Pacific Walker Circulation).


2021 ◽  
Vol 13 (6) ◽  
pp. 1113
Author(s):  
Wen-Pin Fang ◽  
Ding-Rong Wu ◽  
Zhe-Wen Zheng ◽  
Ganesh Gopalakrishnan ◽  
Chung-Ru Ho ◽  
...  

The Kuroshio Current has its origin in the northwestern Pacific, flowing northward to the east of Taiwan and the northern part of Luzon Island. As the Kuroshio Current flows northward, it quasi-periodically intrudes (hereafter referred to as Kuroshio intrusion (KI)) into the northern South China Sea (SCS) basin through the Luzon Strait. Despite the complex generation mechanisms of KI, the purpose of this study is to improve our understanding of the effects of KI through the Luzon Strait on the regional atmospheric and weather variations. Long-term multiple satellite observations, including absolute dynamic topography, absolute geostrophic currents, sea surface winds by ASCAT, multi-scale ultra-high resolution sea surface temperature (MURSST) level-four analysis, and research-quality three-hourly TRMM multi-satellite precipitation analysis (TMPA), was used to systematically examine the aforementioned scientific problem. Analysis indicates that the KI is interlinked with the consequential anomalous precipitation off southwestern Taiwan. This anomalous precipitation would lead to ~560 million tons of freshwater influx during each KI event. Subsequently, independent moisture budget analysis suggests that moisture, mainly from vertical advection, is the possible source of the precipitation anomaly. Additionally, a bulk formula analysis was applied to understand how KI can trigger the precipitation anomaly through vertical advection of moisture without causing an evident change in the low-level flows. These new research findings might reconcile the divisiveness on why winds are not showing a synchronous response during the KI and consequential anomalous precipitation events.


1990 ◽  
Vol 20 (10) ◽  
pp. 1559-1569 ◽  
Author(s):  
Christopher H. Baisan ◽  
Thomas W. Swetnam

Modern fire records and fire-scarred remnant material collected from logs, snags, and stumps were used to reconstruct and analyze fire history in the mixed-conifer and pine forest above 2300 m within the Rincon Mountain Wilderness of Saguaro National Monument, Arizona, United States. Cross-dating of the remnant material allowed dating of fire events to the calendar year. Estimates of seasonal occurrence were compiled for larger fires. It was determined that the fire regime was dominated by large scale (> 200 ha), early-season (May–July) surface fires. The mean fire interval over the Mica Mountain study area for the period 1657–1893 was 6.1 years with a range of 1–13 years for larger fires. The mean fire interval for the mixed-conifer forest type (1748–1886) was 9.9 years with a range of 3–19 years. Thirty-five major fire years between 1700 and 1900 were compared with a tree-ring reconstruction of the Palmer drought severity index (PDSI). Mean July PDSI for 2 years prior to fires was higher (wetter) than average, while mean fire year PDSI was near average. This 490-year record of fire occurrence demonstrates the value of high-resolution (annual and seasonal) tree-ring analyses for documenting and interpreting temporal and spatial patterns of past fire regimes.


2014 ◽  
Vol 24 (12) ◽  
pp. 899-901 ◽  
Author(s):  
Changzhan Gu ◽  
Wenyao Xu ◽  
Guochao Wang ◽  
Takao Inoue ◽  
Jennifer A. Rice ◽  
...  

2021 ◽  
Vol 70 (2) ◽  
pp. 14-22
Author(s):  
Zh. KolumbayevaSh. ◽  

Globalization, informatization, digitalization, led to large-scale changes that have problematized the modern process of upbringing. The modern practice of upbringing in Kazakhstan is aimed at solving the problem of forming an intellectual nation. The key figure in the upbringing process is the teacher. The modernization of public consciousness taking place in Kazakhstan, the renewal of both the content of education and the system of upbringing require understanding not only the content, but also the methodology of the professional training of teachers for the upbringing of children, for the organization of the upbringing system in educational organizations. We believe that the analysis of traditional and clarification of modern methodological foundations of professional training of future teachers of Kazakhstan for upbringing work will give us the opportunity to develop a strategy for training future teachers in the conditions of spiritual renewal of Kazakhstan's society. The article reveals the experience of Abai KazNPU. As a result of the conducted research, we came to the conclusion that the process of training a teacher in Kazakhstan, who has a high degree of ethnic, cultural, and religious diversity, requires strengthening the upbringing and socializing components of the educational process of the university. The strategy of professional training of a modern teacher should be a polyparadigmatic concept with the leading role of ideas of personality-oriented, competence paradigm.


2016 ◽  
Vol 33 (4) ◽  
pp. 621-634 ◽  
Author(s):  
Jingyin Tang ◽  
Corene J. Matyas

AbstractThe creation of a 3D mosaic is often the first step when using the high-spatial- and temporal-resolution data produced by ground-based radars. Efficient yet accurate methods are needed to mosaic data from dozens of radar to better understand the precipitation processes in synoptic-scale systems such as tropical cyclones. Research-grade radar mosaic methods of analyzing historical weather events should utilize data from both sides of a moving temporal window and process them in a flexible data architecture that is not available in most stand-alone software tools or real-time systems. Thus, these historical analyses require a different strategy for optimizing flexibility and scalability by removing time constraints from the design. This paper presents a MapReduce-based playback framework using Apache Spark’s computational engine to interpolate large volumes of radar reflectivity and velocity data onto 3D grids. Designed as being friendly to use on a high-performance computing cluster, these methods may also be executed on a low-end configured machine. A protocol is designed to enable interoperability with GIS and spatial analysis functions in this framework. Open-source software is utilized to enhance radar usability in the nonspecialist community. Case studies during a tropical cyclone landfall shows this framework’s capability of efficiently creating a large-scale high-resolution 3D radar mosaic with the integration of GIS functions for spatial analysis.


Sign in / Sign up

Export Citation Format

Share Document