scholarly journals How the Speed and Latitude of the Jet Stream Affect the Downstream Response to Recurving Tropical Cyclones

2019 ◽  
Vol 147 (9) ◽  
pp. 3261-3281 ◽  
Author(s):  
Peter M. Finocchio ◽  
James D. Doyle

Abstract Recurving tropical cyclones (TCs) that interact with the jet stream can trigger Rossby wave packets that amplify the flow far downstream, but the extent to which the jet stream modulates TC–jet interactions and the development of the downstream response remains unclear. This study uses 25 idealized simulations from the COAMPS-TC model to examine how the latitude and maximum wind speed of an initially zonal jet stream affect the downstream response to recurving TCs. During the first 5 days of the simulations, the formation of a jet streak and a ridge immediately downstream of the TC occurs earlier on low-latitude jets than on high-latitude jets. This is due to weaker TC inertial stability at low latitudes, which promotes negative potential vorticity advection by the irrotational outflow along the jet. Increasing the speed of the jet locally reduces inertial stability poleward of the TC, but does not profoundly affect the ability of the TC to perturb the jet. Beyond 5 days, the highest-latitude and fastest jets, which have the largest baroclinic growth rates, exhibit the highest-amplitude Rossby waves and the most rapidly intensifying surface cyclones farther downstream of the TCs. Both measures of the downstream response are more sensitive to changing the speed than the latitude of the jet. Deactivating condensational heating, shortly after TCs trigger a Rossby wave packet, decreases the amplitude and variability of the downstream flow by up to 3 times relative to the fully moist simulations. This result emphasizes the importance of moist diabatic processes for generating an amplified downstream response to recurving TCs within 7–10 days.

2006 ◽  
Vol 63 (12) ◽  
pp. 3253-3276 ◽  
Author(s):  
Christoph Zülicke ◽  
Dieter Peters

Poleward-breaking Rossby waves often induce an upper-level jet streak over northern Europe. Dominant inertia–gravity wave packets are observed downstream of this jet. The physical processes of their generation and propagation, in such a configuration, are investigated with a mesoscale model. The study is focused on an observational campaign from 17 to 19 December 1999 over northern Germany. Different simulations with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) have been performed. For a high-resolution process study, three domains were set up that encompass the evolution of Rossby waves and that of inertia–gravity waves. To minimize the impact of model damping, the horizontal and vertical resolution has been adjusted appropriately. With a novel statistical approach, the properties of inertia–gravity wave packets have been estimated. This method uses the horizontal divergence field and takes into account the spatial extension of a wave packet. It avoids the explicit treatment of the background field and works for arbitrary wavelength. Two classes of inertia–gravity waves were found: subsynoptic waves with a horizontal wavelength of about 500 km and mesoscale waves with a horizontal wavelength of about 200 km. The subsynoptic structures were also detected in radiosonde observations during this campaign. The similarity between simulated and observed wavelengths and amplitudes suggests that the simulations can be considered as near realistic. Spontaneous radiation from unbalanced flow is an important process of inertia–gravity wave generation. Synoptic-scale imbalances in the exit region of the upper-tropospheric jet streak were identified with the smoothed cross-stream Lagrangian Rossby number. In a number of simulations with different physics, it was found that the inertia–gravity wave activity was related to the tropospheric jet, orography, and moist convection. The upward propagation of inertia–gravity waves was favored during this event of a poleward-breaking Rossby wave. The presence of the polar vortex induced background winds exceeding the critical line. Consequently, the activity of inertia–gravity waves in the lower stratosphere increased by an order of magnitude during the case study. The successful simulation of the complex processes of generation and propagation showed the important role of poleward Rossby wave breaking for the appearance of inertia–gravity waves in the midlatitudes.


Author(s):  
Audrey Delpech ◽  
Claire Ménesguen ◽  
Yves Morel ◽  
Leif Thomas ◽  
Frédéric Marin ◽  
...  

AbstractAt low latitudes in the ocean, the deep currents are shaped into narrow jets flowing eastward and westward, reversing periodically with latitude between 15°S and 15°N. These jets are present from the thermocline to the bottom. The energy sources and the physical mechanisms responsible for their formation are still debated and poorly understood. This study explores the role of the destabilization of intra-annual equatorial waves in the jets formation process, as these waves are known to be an important energy source at low latitudes. The study focuses particularly on the role of barotropic Rossby waves as a first step towards understanding the relevant physical mechanisms. It is shown from a set of idealized numerical simulations and analytical solutions that Non-Linear Triad Interactions (NLTI) play a crucial role in the transfer of energy towards jet-like structures (long waves with short meridional wavelengths) that induce a zonal residual mean circulation. The sensitivity of the instability emergence and the scale selection of the jet-like secondary wave to the forced primary wave is analyzed. For realistic amplitudes around 5-20 cm s−1, the primary waves that produce the most realistic jet-like structures are zonally-propagating intra-annual waves with periods between 60 and 130 days and wavelengths between 200 and 300 km. The NLTI mechanism is a first step towards the generation of a permanent jet-structured circulation, and is discussed in the context of turbulent cascade theories.


2018 ◽  
Vol 146 (5) ◽  
pp. 1283-1301 ◽  
Author(s):  
Jacopo Riboldi ◽  
Matthias Röthlisberger ◽  
Christian M. Grams

Abstract The interaction of recurving tropical cyclones (TCs) with midlatitude Rossby waves during extratropical transition (ET) can significantly alter the midlatitude flow configuration. This study provides a climatological investigation of Rossby wave initiation (RWI) by transitioning TCs in the specific configuration of an initially zonal midlatitude waveguide and elucidates physical processes governing ab initio flow amplification during ET. Recurving TCs interacting with a zonally oriented waveguide in the western North Pacific (WNP) basin from 1979 to 2013 are categorized into cases initiating Rossby waves (TC-RWI) or not (TC-noRWI). Interactions with a zonally oriented waveguide occurred for 22.7% of the recurving TCs, and one-third of these resulted in TC-RWI. In the presence of a TC, the probability of RWI on a zonally oriented waveguide is 3 times larger than in situations without a TC. The occurrence of TC-RWI exhibits a seasonality and is relatively more common during boreal summer than in autumn. We further reveal that a strong preexisting upper-level jet stream, embedded in a deformative large-scale flow pattern, hinders TC-RWI as air from the diabatic outflow of the TC is rapidly advected downstream and does not lead to strong ridge building. In contrast, an enhanced monsoon trough favors TC-RWI as the poleward moisture transport strengthens diabatic outflow and leads to strong ridge building during ET. Thus, we conclude that TC-related ab initio flow amplification over the WNP is governed by characteristics of the large-scale flow more so than by characteristics of the recurving TC.


2020 ◽  
Vol 148 (2) ◽  
pp. 541-558
Author(s):  
Allison Lynn Brannan ◽  
Jeffrey M. Chagnon

Abstract Previous case studies have noted a significant extratropical flow response to recurving Atlantic tropical cyclones (TCs), which is often linked to extreme weather events downstream. This study examines the modification of Rossby waves on the extratropical jet in response to recurving Atlantic TCs from a climatological perspective. Changes in amplitude and location of Rossby waves are identified using a wavelet decomposition technique on isentropic potential vorticity. The climatology demonstrates that recurving Atlantic TC events are capable of modifying the amplitude of the extratropical flow. Though the majority of TCs did not produce a significant, systematic modification of the extratropical flow amplitude, a subset of events were associated with a period of significant Rossby wave deamplification occurring from the time of recurvature to 48 h after recurvature, followed by a return of the Rossby wave power beginning around 96 h after recurvature. The characteristics of the TCs were not significantly associated with the resulting extratropical flow modification—a result consistent with previous western North Pacific climatologies. The nature of the extratropical flow response is most strongly tied to the average translation speed of the TC relative to the Rossby wave over the 72 h following recurvature. This study highlights the importance of investigating the extratropical flow response to recurving Atlantic TCs with regards to predictability.


Jet Stream ◽  
2019 ◽  
pp. 47-60
Author(s):  
Tim Woollings

The chapter opens with a description of severe weather events which occurred across Asia in the summer of 2010. These events were linked in atmospheric physics by a Rossby wave, which causes the jet stream to meander north and south. The concept of vorticity is introduced in order to give a basic understanding of Rossby waves. Some characteristics of the jet stream over Asia are also discussed, such as how it changes with the seasons.


2012 ◽  
Vol 25 (19) ◽  
pp. 6496-6509 ◽  
Author(s):  
Paolo Davini ◽  
Chiara Cagnazzo ◽  
Silvio Gualdi ◽  
Antonio Navarra

Abstract In this paper, Northern Hemisphere winter blocking is analyzed through the introduction of a set of new bidimensional diagnostics based on geopotential height that provide information about the occurrence, the duration, the intensity, and the wave breaking associated with the blocking. This analysis is performed with different reanalysis datasets in order to evaluate the sensitivity of the index and the diagnostics adopted. In this way, the authors are able to define a new category of blocking placed at low latitudes that is similar to midlatitude blocking in terms of the introduced diagnostics but is unable to divert or block the flow. Furthermore, over the Euro-Atlantic sector it is shown that it is possible to phenomenologically distinguish between high-latitude blocking occurring over Greenland, north of the jet stream and dominated by cyclonic wave breaking, and the traditional midlatitude blocking localized over Europe and driven by anticyclonic wave breaking. These latter events are uniformly present in a band ranging from the Azores up to Scandinavia. Interestingly, a similar distinction cannot be pointed out over the Pacific basin where the blocking activity is dominated by high-latitude blocking occurring over eastern Siberia. Finally, considering the large impact that blocking may have on the Northern Hemisphere, an analysis of the variability and the trend is carried out. This shows a significant increase of Atlantic low-latitude blocking frequency and an eastward displacement of the strongest blocking events over both the Atlantic and Pacific Oceans.


2018 ◽  
Vol 940 (10) ◽  
pp. 2-6
Author(s):  
J.A. Younes ◽  
M.G. Mustafin

The issue of calculating the plane rectangular coordinates using the data obtained by the satellite observations during the creation of the geodetic networks is discussed in the article. The peculiarity of these works is in conversion of the coordinates into the Mercator projection, while the plane coordinate system on the base of Gauss-Kruger projection is used in Russia. When using the technology of global navigation satellite system, this task is relevant for any point (area) of the Earth due to a fundamentally different approach in determining the coordinates. The fact is that satellite determinations are much more precise than the ground coordination methods (triangulation and others). In addition, the conversion to the zonal coordinate system is associated with errors; the value at present can prove to be completely critical. The expediency of using the Mercator projection in the topographic and geodetic works production at low latitudes is shown numerically on the basis of model calculations. To convert the coordinates from the geocentric system with the Mercator projection, a programming algorithm which is widely used in Russia was chosen. For its application under low-latitude conditions, the modification of known formulas to be used in Saudi Arabia is implemented.


2010 ◽  
Vol 67 (11) ◽  
pp. 3652-3672 ◽  
Author(s):  
Junjun Liu ◽  
Tapio Schneider

Abstract The giant planet atmospheres exhibit alternating prograde (eastward) and retrograde (westward) jets of different speeds and widths, with an equatorial jet that is prograde on Jupiter and Saturn and retrograde on Uranus and Neptune. The jets are variously thought to be driven by differential radiative heating of the upper atmosphere or by intrinsic heat fluxes emanating from the deep interior. However, existing models cannot account for the different flow configurations on the giant planets in an energetically consistent manner. Here a three-dimensional general circulation model is used to show that the different flow configurations can be reproduced by mechanisms universal across the giant planets if differences in their radiative heating and intrinsic heat fluxes are taken into account. Whether the equatorial jet is prograde or retrograde depends on whether the deep intrinsic heat fluxes are strong enough that convection penetrates into the upper troposphere and generates strong equatorial Rossby waves there. Prograde equatorial jets result if convective Rossby wave generation is strong and low-latitude angular momentum flux divergence owing to baroclinic eddies generated off the equator is sufficiently weak (Jupiter and Saturn). Retrograde equatorial jets result if either convective Rossby wave generation is weak or absent (Uranus) or low-latitude angular momentum flux divergence owing to baroclinic eddies is sufficiently strong (Neptune). The different speeds and widths of the off-equatorial jets depend, among other factors, on the differential radiative heating of the atmosphere and the altitude of the jets, which are vertically sheared. The simulations have closed energy and angular momentum balances that are consistent with observations of the giant planets. They exhibit temperature structures closely resembling those observed and make predictions about as yet unobserved aspects of flow and temperature structures.


2021 ◽  
Author(s):  
Sem Vijverberg ◽  
Dim Coumou

<p>Heatwaves can have devastating impact on society and reliable early warnings at several weeks lead time are needed. Heatwaves are often associated with quasi-stationary Rossby waves, which interact with sea surface temperature (SST). Previous studies showed that north-Pacific SST can provide long-lead predictability for eastern U.S. temperature, moderated by an atmospheric Rossby wave. The exact mechanisms, however, are not well understood. Here we analyze Rossby waves associated with heatwaves in western and eastern US. Causal inference analyses reveal that both waves are characterized by positive ocean-atmosphere feedbacks at synoptic timescales, amplifying the waves. However, this positive feedback on short timescales is not the causal mechanism that leads to a long-lead SST signal. Only the eastern US shows a long-lead causal link from SSTs to the Rossby wave. We show that the long-lead SST signal derives from low-frequency PDO variability, providing the source of eastern US temperature predictability. We use this improved physical understanding to identify more reliable long-lead predictions. When, at the onset of summer, the Pacific is in a pronounced PDO phase, the SST signal is expected to persist throughout summer. These summers are characterized by a stronger ocean-boundary forcing, thereby more than doubling the eastern US temperature forecast skill, providing a temporary window of enhanced predictability.</p>


2008 ◽  
Vol 26 (4) ◽  
pp. 893-903 ◽  
Author(s):  
◽  
◽  
◽  

Abstract. Sometimes the ionospheric total electron content (TEC) is significantly enhanced during low geomagnetic activities before storms. In this article, we investigate the characteristics of those interesting TEC enhancements using regional and global TEC data. We analyzed the low-latitude TEC enhancement events that occurred around longitude 120° E on 10 February 2004, 21 January 2004, and 4 March 2001, respectively. The TEC data are derived from regional Global Positioning System (GPS) observations in the Asia/Australia sector as well as global ionospheric maps (GIMs) produced by Jet Propulsion Laboratory (JPL). Strong enhancements under low geomagnetic activity before the storms are simultaneously presented at low latitudes in the Asia/Australia sector in regional TEC and JPL GIMs. These TEC enhancements are shown to be regional events with longitudinal and latitudinal extent. The regions of TEC enhancements during these events are confined at narrow longitude ranges around longitude 120° E. The latitudinal belts of maxima of enhancements locate around the northern and southern equatorial ionization anomaly (EIA) crests, which are consistent with those low-latitude events presented by Liu et al. (2008). During the 4 March 2001 event, the total plasma density Ni observed by the Defense Meteorological Satellite Program (DMSP) spacecraft F13 at 840 km altitude are of considerably higher values on 4 March than on the previous day in the TEC enhanced regions. Some TEC enhancement events are possibly due to contributions from auroral/magnetospheric origins; while there are also quasi-periodic enhancement events not related to geomagnetic activity and associated probably with planetary wave type oscillations (e.g. the 6 January 1998 event). Further investigation is warrented to identify/separate contributions from possible sources.


Sign in / Sign up

Export Citation Format

Share Document