scholarly journals An Analysis of Vortices Embedded within a Quasi-Linear Convective System Using X-Band Polarimetric Radar

2012 ◽  
Vol 27 (6) ◽  
pp. 1520-1537 ◽  
Author(s):  
Vivek N. Mahale ◽  
Jerald A. Brotzge ◽  
Howard B. Bluestein

Abstract On 2 April 2010, a developing quasi-linear convective system (QLCS) moved rapidly northeastward through central Oklahoma spawning at least three intense, mesoscale vortices. At least two of these vortices caused damage rated as category 0 to 1 on the enhanced Fujita scale (EF0–EF1) in and near the town of Rush Springs. Two radar networks—the National Weather Service Weather Surveillance Radar-1988 Doppler network (WSR-88D) and the Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network—collected high spatial and temporal resolution data of the event. This study is an in-depth polarimetric analysis of mesovortices within a QLCS. In this case study, the storm development and evolution of the QLCS mesovortices are examined. Significant findings include the following: 1) The damage in Rush Springs was caused by a combination of the fast translation speed and the embedded circulations associated with QLCS vortices. The vortices’ relative winds nearly negated the storm motion to the left of the vortex, but doubled the ground-relative wind to the right of the vortex. 2) A significant differential reflectivity (ZDR) arc developed along the forward flank of the first vortex. The ZDR arc propagated northeastward along the QLCS with the development of each new vortex. 3) A minimum in the copolar correlation coefficient (ρhv) in the center of the strongest vortex was observed, indicating the likely existence of a polarimetric tornado debris signature (TDS). A secondary ρhv minimum also was found just to the right of the vortex center, possibly associated with lofted debris from straight-line winds.

2006 ◽  
Vol 23 (12) ◽  
pp. 1668-1681 ◽  
Author(s):  
Eugenio Gorgucci ◽  
V. Chandrasekar ◽  
Luca Baldini

Abstract New algorithms for rain attenuation correction of reflectivity factor and differential reflectivity are presented. Following the methodology suggested for the first time by Gorgucci et al., the new algorithms are developed based on the self-consistency principle, describing the interrelation between polarimetric measurements along the rain medium. There is an increasing interest in X-band radar systems, owing to the early success of the attenuation-correction procedures as well as the initiative of the Center for Collaborative Adaptive Sensing of the Atmosphere to deploy X-band radars in a networked fashion. In this paper, self-consistent algorithms for correcting attenuation and differential attenuation are developed. The performance of the algorithms for application to X-band dual-polarization radars is evaluated extensively. The evaluation is conducted based on X-band dual-polarization observations generated from S-band radar measurements. Evaluation of the new self-consistency algorithms shows significant improvement in performance compared to the current class of algorithms. In the case that reflectivity and differential reflectivity are calibrated between ±1 and ±0.2 dB, respectively, the new algorithms can estimate both attenuation and differential attenuation with less than 10% bias and 15% random error. In addition, the attenuation-corrected reflectivity and differential reflectivity are within 1–0.2 dB 96% and 99% of the time, respectively, demonstrating the good performance.


2018 ◽  
Vol 146 (8) ◽  
pp. 2483-2502 ◽  
Author(s):  
Howard B. Bluestein ◽  
Kyle J. Thiem ◽  
Jeffrey C. Snyder ◽  
Jana B. Houser

Abstract This study documents the formation and evolution of secondary vortices associated within a large, violent tornado in Oklahoma based on data from a close-range, mobile, polarimetric, rapid-scan, X-band Doppler radar. Secondary vortices were tracked relative to the parent circulation using data collected every 2 s. It was found that most long-lived vortices (those that could be tracked for ≥15 s) formed within the radius of maximum wind (RMW), mainly in the left-rear quadrant (with respect to parent tornado motion), passing around the center of the parent tornado and dissipating closer to the center in the right-forward and left-forward quadrants. Some secondary vortices persisted for at least 1 min. When a Burgers–Rott vortex is fit to the Doppler radar data, and the vortex is assumed to be axisymmetric, the secondary vortices propagated slowly against the mean azimuthal flow; if the vortex is not assumed to be axisymmetric as a result of a strong rear-flank gust front on one side of it, then the secondary vortices moved along approximately with the wind.


2021 ◽  
Vol 13 (3) ◽  
pp. 420
Author(s):  
Jingru Sun ◽  
Gabriel Vecchi ◽  
Brian Soden

Multi-year records of satellite remote sensing of sea surface salinity (SSS) provide an opportunity to investigate the climatological characteristics of the SSS response to tropical cyclones (TCs). In this study, the influence of TC winds, rainfall and preexisting ocean stratification on SSS evolution is examined with multiple satellite-based and in-situ data. Global storm-centered composites indicate that TCs act to initially freshen the ocean surface (due to precipitation), and subsequently salinify the surface, largely through vertical ocean processes (mixing and upwelling), although regional hydrography can lead to local departure from this behavior. On average, on the day a TC passes, a strong SSS decrease is observed. The fresh anomaly is subsequently replaced by a net surface salinification, which persists for weeks. This salinification is larger on the right (left)-hand side of the storm motion in the Northern (Southern) Hemisphere, consistent with the location of stronger turbulent mixing. The influence of TC intensity and translation speed on the ocean response is also examined. Despite having greater precipitation, stronger TCs tend to produce longer-lasting, stronger and deeper salinification especially on the right-hand side of the storm motion. Faster moving TCs are found to have slightly weaker freshening with larger area coverage during the passage, but comparable salinification after the passage. The ocean haline response in four basins with different climatological salinity stratification reveals a significant impact of vertical stratification on the salinity response during and after the passage of TCs.


2013 ◽  
Vol 7 (1) ◽  
pp. 37-50
Author(s):  
Masanori Yamasaki

This paper describes results from numerical experiments which have been made toward a better understanding of tropical cyclone formation. This study uses a nonhydrostatic version of the author’s mesoscale-convection-resolving model that was developed in the 1980s to improve paramerization schemes of moist convection. In this study the horizontal grid size is taken to be 20 km in an area of 6,000 km x 3,000 km, and a non-uniform coarse grid is used in two areas to its north and south. Results from two numerical experiments are presented; one (case 1) without any environmental flow, and the other (case 2) with an easterly flow without low-level vertical shear. Three circular buoyancy perturbations are placed in the west-east direction at the initial time. Convection is initiated in the imposed latently unstable (positive CAPE) area. In both cases, a vortex with a pressure low is formed, and two band-shaped convective systems are formed to the north and the south of the vortex center. The vortex and two convective systems are oriented in the westsouthwest – eastnortheast direction, and their horizontal scales are nearly 2,000 km. In case 1, the band-shaped convective system on the southern side is stronger, and winds are stronger just to its south. In contrast, in case 2, the northern convective system is stronger, and winds are stronger just to its north. Therefore, the distributions of the equivalent potential temperature in the boundary layer and latent instability (positive buoyancy of the rising air) are also quite different between cases 1 and 2. The TC formation processes in these different cases are discussed, with an emphasis on the importance of examining the time change of latent instability field.


2010 ◽  
Vol 25 (1) ◽  
pp. 173-189 ◽  
Author(s):  
J. Brotzge ◽  
K. Hondl ◽  
B. Philips ◽  
L. Lemon ◽  
E. J. Bass ◽  
...  

Abstract The Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) is a multiyear engineering research center established by the National Science Foundation for the development of small, inexpensive, low-power radars designed to improve the scanning of the lowest levels (<3 km AGL) of the atmosphere. Instead of sensing autonomously, CASA radars are designed to operate as a network, collectively adapting to the changing needs of end users and the environment; this network approach to scanning is known as distributed collaborative adaptive sensing (DCAS). DCAS optimizes the low-level volume coverage scanning and maximizes the utility of each scanning cycle. A test bed of four prototype CASA radars was deployed in southwestern Oklahoma in 2006 and operated continuously while in DCAS mode from March through June of 2007. This paper analyzes three convective events observed during April–May 2007, during CASA’s intense operation period (IOP), with a special focus on evaluating the benefits and weaknesses of CASA radar system deployment and DCAS scanning strategy of detecting and tracking low-level circulations. Data collected from nearby Weather Surveillance Radar-1988 Doppler (WSR-88D) and CASA radars are compared for mesoscyclones, misocyclones, and low-level vortices. Initial results indicate that the dense, overlapping coverage at low levels provided by the CASA radars and the high temporal (60 s) resolution provided by DCAS give forecasters more detailed feature continuity and tracking. Moreover, the CASA system is able to resolve a whole class of circulations—misocyclones—far better than the WSR-88Ds. In fact, many of these are probably missed completely by the WSR-88D. The impacts of this increased detail on severe weather warnings are under investigation. Ongoing efforts include enhancing the DCAS data quality and scanning strategy, improving the DCAS data visualization, and developing a robust infrastructure to better support forecast and warning operations.


2006 ◽  
Vol 23 (7) ◽  
pp. 952-963 ◽  
Author(s):  
Sergey Y. Matrosov ◽  
Robert Cifelli ◽  
Patrick C. Kennedy ◽  
Steven W. Nesbitt ◽  
Steven A. Rutledge ◽  
...  

Abstract A comparative study of the use of X- and S-band polarimetric radars for rainfall parameter retrievals is presented. The main advantage of X-band polarimetric measurements is the availability of reliable specific differential phase shift estimates, KDP, for lighter rainfalls when phase measurements at the S band are too noisy to produce usable KDP. Theoretical modeling with experimental raindrop size distributions indicates that due to some non-Rayleigh resonant effects, KDP values at a 3.2-cm wavelength (X band) are on average a factor of 3.7 greater than at 11 cm (S band), which is a somewhat larger difference than simple frequency scaling predicts. The non-Rayleigh effects also cause X-band horizontal polarization reflectivity, Zeh, and differential reflectivity, ZDR, to be larger than those at the S band. The differences between X- and S-band reflectivities can exceed measurement uncertainties for Zeh starting approximately at Zeh > 40 dBZ, and for ZDR when the mass-weighted drop diameter, Dm, exceeds about 2 mm. Simultaneous X- and S-band radar measurements of rainfall showed that consistent KDP estimates exceeding about 0.1° km−1 began to be possible at reflectivities greater than ∼26–30 dBZ while at the S band such estimates can generally be made if Zeh > ∼35–39 dBZ. Experimental radar data taken in light-to-moderate stratiform rainfalls with rain rates R in an interval from 2.5 to 15 mm h−1 showed availability of the KDP-based estimates of R for most of the data points at the X band while at the S band such estimates were available only for R greater than about 8–10 mm h−1. After correcting X-band differential reflectivity measurements for differential attenuation, ZDR measurements at both radar frequency bands were in good agreement with each other for Dm < 2 mm, which approximately corresponds to ZDR ≈ 1.6 dB. The ZDR-based retrievals of characteristic raindrop sizes also agreed well with in situ disdrometer measurements.


Author(s):  
Richard Bradley

How would someone who had been brought up in a roundhouse adapt to life in a rectangular world? The experience of a servant working for a family in Malawi shows how difficult it could be. Her predicament is described in a book entitled Women’s Work in Heathen Lands, published in 1886. Jan Deregowski quotes the following extract:… In laying the table there is trouble for the girl. At home her house is round; a straight line and the right angle are unknown to her or her parents before her. Day after day therefore she will lay the cloth with the folds anything but parallel with one edge of the table. Plates, knives and forks are set down in a confusing manner, and it is only after lessons often repeated and much annoyance that she begins to see how things might be done (Laws 1886, quoted by Deregowski 1973: 180–1)… That simple story introduces a larger issue. Under what circumstances did people make the transition from a world of circular structures to one of squares and rectangles, and how were their lives affected by that process? It is surprising how much attention had been paid to structural changes among ancient buildings and how little to the political and social circumstances in which they happened. One way of approaching this topic is not only studying the advantages offered by new styles of architecture, but also asking which important features might be lost. That is too rarely considered. Many of the approaches described in Chapter 2 emphasized the possibilities offered by the change from circular to rectangular buildings. Houses could be larger and could accommodate more people; they would be easier to maintain; they could be expanded as the number of inhabitants increased and space was subdivided; in many cases rectilinear dwellings could be inhabited over longer periods than roundhouses. None of those arguments is unsatisfactory in itself, but all are incomplete because they do not take into account the motives of the people who chose to live there. Chapter 2 also showed how houses could be used to emphasize subtle distinctions among their inhabitants: differences that were based on age, gender, and social standing.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 784 ◽  
Author(s):  
Anil Kumar Khanal ◽  
Guy Delrieu ◽  
Frédéric Cazenave ◽  
Brice Boudevillain

The RadAlp experiment aims at developing advanced methods for rain and snow estimation using weather radar remote sensing techniques in high mountain regions for improved water resource assessment and hydrological risk mitigation. A unique observation system has been deployed in the French Alps, Grenoble region. It is composed of a Météo-France operated X-band MOUC radar (volumetric, Doppler and polarimetric) on top of the Mt Moucherotte (1920 m ASL), the X-band XPORT research radar (volumetric, Doppler, polarimetric), a K-band micro rain radar (MRR, Doppler, vertically pointing) and in situ sensors (rain gauges, disdrometers), latter three operated on the Grenoble campus (220 m ASL). Based on the observation that the precipitation phase changes at/below the elevation of mountain-top MOUC radar for more than 60% of the significant events, an algorithm for ML identification has been developed using valley-based radar systems: it uses the quasi vertical profiles of XPORT polarimetric measurements (horizontal and vertical reflectivity, differential reflectivity, cross-polar correlation coefficient) and the MRR vertical profiles of apparent falling velocity spectra. The algorithm produces time series of the altitudes and values of peaks and inflection points of the different radar observables. A literature review allows us to link the micro-physical processes at play during the melting process with the available polarimetric and Doppler signatures, e.g., (i) regarding the altitude differences between the peaks of reflectivity, cross-polar correlation coefficient and differential reflectivity, as well as (ii) regarding the co-variation of the profiles of Doppler velocity spectra and cross-polar correlation coefficient. A statistical analysis of the ML based on 42 rain events (98 h of XPORT data) is then proposed. Among other results, this study indicates that (i) the mean value of the ML width in Grenoble is 610 m with a standard deviation of 160 m; (ii) the mean altitude difference between the horizontal reflectivity and the ρ H V peaks is 90 m and the mean altitude difference between the ρ H V and Zdr peaks is 30 m; (iii) even for the limited rainrate range in the dataset (0–8.5 mm h − 1 ), the “intensity effect” is clear on the reflectivity profile and the ML width, as well as on polarimetric variables such as ρ H V peak value and the Zdr enhancement in the upper part of the profile. On the contrary, the study of both the “density effect” and the influence of the 0   ° C isotherm altitude did not yield significant results with the considered dataset; (iv) a principal component analysis on one hand shows the richness of the dataset since the first 2 PCs explain only 50% of the total variance and on the other hand the added-value of the polarimetric variables since they rank high in a ranking of the total variance explained by individual variables.


2015 ◽  
Vol 8 (11) ◽  
pp. 4681-4698 ◽  
Author(s):  
G. Vulpiani ◽  
L. Baldini ◽  
N. Roberto

Abstract. This work documents the effective use of X-band radar observations for monitoring severe storms in an operational framework. Two severe hail-bearing Mediterranean storms that occurred in 2013 in southern Italy, flooding two important Sicilian cities, are described in terms of their polarimetric radar signatures and retrieved rainfall fields. The X-band dual-polarization radar operating inside the Catania airport (Sicily, Italy), managed by the Italian Department of Civil Protection, is considered here. A suitable processing is applied to X-band radar measurements. The crucial procedural step relies on the differential phase processing, being preparatory for attenuation correction and rainfall estimation. It is based on an iterative approach that uses a very short-length (1 km) moving window, allowing proper capture of the observed high radial gradients of the differential phase. The parameterization of the attenuation correction algorithm, which uses the reconstructed differential phase shift, is derived from electromagnetic simulations based on 3 years of drop size distribution (DSD) observations collected in Rome (Italy). A fuzzy logic hydrometeor classification algorithm was also adopted to support the analysis of the storm characteristics. The precipitation field amounts were reconstructed using a combined polarimetric rainfall algorithm based on reflectivity and specific differential phase. The first storm was observed on 21 February when a winter convective system that originated in the Tyrrhenian Sea, marginally hit the central-eastern coastline of Sicily, causing a flash flood in Catania. Due to an optimal location (the system is located a few kilometers from the city center), it was possible to retrieve the storm characteristics fairly well, including the amount of rainfall field at the ground. Extemporaneous signal extinction, caused by close-range hail core causing significant differential phase shift in a very short-range path, is documented. The second storm, on 21 August 2013, was a summer mesoscale convective system that originated from a Mediterranean low pressure system lasting a few hours that eventually flooded the city of Syracuse. The undergoing physical process, including the storm dynamics, is inferred by analyzing the vertical sections of the polarimetric radar measurements. The high registered amount of precipitation was fairly well reconstructed, although with a trend toward underestimation at increasing distances. Several episodes of signal extinction were clearly manifested during the mature stage of the observed supercells.


2019 ◽  
Vol 12 (11) ◽  
pp. 5897-5911 ◽  
Author(s):  
Cuong M. Nguyen ◽  
Mengistu Wolde ◽  
Alexei Korolev

Abstract. This paper presents a methodology for ice water content (IWC) retrieval from a dual-polarization side-looking X-band airborne radar. Measured IWC from aircraft in situ probes is weighted by a function of the radar differential reflectivity (Zdr) to reduce the effects of ice crystal shape and orientation on the variation in IWC – specific differential phase (Kdp) joint distribution. A theoretical study indicates that the proposed method, which does not require a knowledge of the particle size distribution (PSD) and number density of ice crystals, is suitable for high-ice-water-content (HIWC) regions in tropical convective clouds. Using datasets collected during the High Altitude Ice Crystals – High Ice Water Content (HAIC-HIWC) international field campaign in Cayenne, French Guiana (2015), it is shown that the proposed method improves the estimation bias by 35 % and increases the correlation by 4 % on average, compared to the method using specific differential phase (Kdp) alone.


Sign in / Sign up

Export Citation Format

Share Document