scholarly journals Novel automated measuring system for evaluating labile plasma iron in serum

Author(s):  
Takeshi Saito ◽  
Katsuya Ikuta ◽  
Mayumi Hatayama ◽  
Kotoe Shibusa ◽  
Kozo Matsui ◽  
...  

BackgroundAs the saturation of transferrin by iron in the serum is approximately 30%, iron loaded to the blood can bind to transferrin not bearing iron. Nevertheless, prolonged iron influx finally results in full transferrin saturation, and iron not bound to transferrin will appear in the serum; this iron is known as non-transferrin-bound iron (NTBI). NTBI damages organs through the production of free radicals. Previously, we established an automated quantification system for NTBI; however, measuring labile plasma iron, which is considered as a highly redox-active component of NTBI, should be a better prognostic factor in iron-overloaded patients.MethodsWe designed and developed a novel system for evaluating labile plasma iron utilizing the Trinder reaction. Automated system was utilized because the previously reported methods for labile plasma iron are intricate and the introduction to the clinical stage has been challenging. Validations such as the contribution of serum proteins and metal ions for this system were evaluated using human serum samples.ResultsWe confirmed that our novel system can evaluate labile plasma iron utilizing Trinder reaction and the oxidative potential of ceruloplasmin in the serum. This system was also confirmed to be clinically practical. Metals other than iron did not influence this system. We observed that samples with high NTBI did not always exhibit high labile plasma iron and vice versa, highlighting the necessity of labile plasma iron quantification in evaluating the toxicity of NTBI.ConclusionsOur novel system should contribute to fundamental and clinical research because it can measure labile plasma iron using the high-throughput automated analyser.

1988 ◽  
Vol 34 (1) ◽  
pp. 141-144 ◽  
Author(s):  
K Matsumoto ◽  
H Kikuchi ◽  
S Kano ◽  
H Iri ◽  
H Takahashi ◽  
...  

Abstract This is a fully automated system for determining six common antiepileptic drugs and two principal metabolites of carbamazepine in serum. It is based on "high-performance" liquid chromatography (HPLC), with column switching. TSKprecolumn BSA-ODS and TSKgel ODS-120A (both from Toyo Soda) were used as the precolumn and analytical column, respectively. The former contains octadecylsilyl resins treated with bovine serum albumin (BSA), and does not adsorb macromolecules such as serum proteins but retains small lipophilic molecules such as antiepileptic drugs. Serum samples are directly injected onto the precolumn. After washing out the serum proteins from the precolumn with sodium phosphate buffer, we switch the column connections to introduce the retained substances onto the analytical column and elute with a step-gradient of acetonitrile/sodium phosphate buffer. The high analytical recovery (95-102%) and the reproducibilities (CV less than 5% within-run) indicate that this system is suitable for use in theraputic drug monitoring in clinical laboratories.


Blood ◽  
2005 ◽  
Vol 105 (11) ◽  
pp. 4527-4531 ◽  
Author(s):  
Caroline Le Lan ◽  
Olivier Loréal ◽  
Tally Cohen ◽  
Martine Ropert ◽  
Hava Glickstein ◽  
...  

Abstract Labile plasma iron (LPI) represents the redox active component of non–transferrin-bound iron (NTBI). Its presence in thalassemic patients has been recently reported. The aim of the present study was to quantify LPI in HFE genetic hemochromatosis (GH) and to characterize the mechanisms accounting for its appearance. We studied 159 subjects subdivided into the following groups: (1) 23 with iron overloaded GH; (2) 14 with iron-depleted GH; (3) 26 with dysmetabolic hepatosiderosis; (4) 33 with alcoholic cirrhosis; (5) 63 healthy controls. Both NTBI and LPI were substantially higher in patients with iron-overloaded GH than in those with iron-depleted GH or in healthy controls. LPI was significantly correlated with serum transaminase increase in this group. LPI was elevated in the alcoholic cirrhosis subgroup of severely affected patients. LPI was found essentially when transferrin saturation exceeded 75%, regardless of the etiologic condition. Transferrin saturation above 75% was related to iron overload in GH and to liver failure in alcoholic cirrhosis. LPI is present in C282Y/C282Y hemochromatosis and may be a marker of toxicity due to its potential for catalyzing the generation of reactive oxygen radicals in vivo.


2001 ◽  
Vol 47 (1) ◽  
pp. 110-117 ◽  
Author(s):  
Magnus Jonsson ◽  
Joyce Carlson ◽  
Jan-Olof Jeppsson ◽  
Per Simonsson

Abstract Background: Electrophoresis of serum samples allows detection of monoclonal gammopathies indicative of multiple myeloma, Waldenström macroglobulinemia, monoclonal gammopathy of undetermined significance, and amyloidosis. Present methods of high-resolution agarose gel electrophoresis (HRAGE) and immunofixation electrophoresis (IFE) are manual and labor-intensive. Capillary zone electrophoresis (CZE) allows rapid automated protein separation and produces digital absorbance data, appropriate as input for a computerized decision support system. Methods: Using the Beckman Paragon CZE 2000 instrument, we analyzed 711 routine clinical samples, including 95 monoclonal components (MCs) and 9 cases of Bence Jones myeloma, in both the CZE and HRAGE systems. Mathematical algorithms developed for the detection of monoclonal immunoglobulins (MCs) in the γ- and β-regions of the electropherogram were tested on the entire material. Additional algorithms evaluating oligoclonality and polyclonal concentrations of immunoglobulins were also tested. Results: CZE electropherograms corresponded well with HRAGE. Only one IgG MC of 1 g/L, visible on HRAGE, was not visible after CZE. Algorithms detected 94 of 95 MCs (98.9%) and 100% of those visible after CZE. Of 607 samples lacking an MC on HRAGE, only 3 were identified by the algorithms (specificity, 99%). Algorithms evaluating total gammaglobulinemia and oligoclonality also identified several cases of Bence Jones myeloma. Conclusions: The use of capillary electrophoresis provides a modern, rapid, and cost-effective method of analyzing serum proteins. The additional option of computerized decision support, which provides rapid and standardized interpretations, should increase the clinical availability and usefulness of protein analyses in the future.


2021 ◽  
Vol 59 (1) ◽  
pp. 155-163
Author(s):  
Mindy Kohlhagen ◽  
Surendra Dasari ◽  
Maria Willrich ◽  
MeLea Hetrick ◽  
Brian Netzel ◽  
...  

AbstractObjectivesA matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) method (Mass-Fix) as a replacement for gel-based immunofixation (IFE) has been recently described. To utilize Mass-Fix clinically, a validated automated method was required. Our aim was to automate the pre-analytical processing, improve positive specimen identification and ergonomics, reduce paper data storage and increase resource utilization without increasing turnaround time.MethodsSerum samples were batched and loaded onto a liquid handler along with reagents and a barcoded sample plate. The pre-analytical steps included: (1) Plating immunopurification beads. (2) Adding 10 μl of serum. (3) Bead washing. (4) Eluting the immunoglobulins (Igs), and reducing to separate the heavy and light Ig chains. The resulting plate was transferred to a second low-volume liquid handler for MALDI plate spotting. MALDI-TOF mass spectra were collected. Integrated in-house developed software was utilized for sample tracking, driving data acquisition, data analysis, history tracking, and result reporting. A total of 1,029 residual serum samples were run using the automated system and results were compared to prior electrophoretic results.ResultsThe automated Mass-Fix method was capable of meeting the validation requirements of concordance with IFE, limit of detection (LOD), sample stability and reproducibility with a low repeat rate. Automation and integrated software allowed a single user to process 320 samples in an 8 h shift. Software display facilitated identification of monoclonal proteins. Additionally, the process maintains positive specimen identification, reduces manual pipetting, allows for paper free tracking, and does not significantly impact turnaround time (TAT).ConclusionsMass-Fix is ready for implementation in a high-throughput clinical laboratory.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Barbara Lisowska-Myjak ◽  
Agnieszka Strawa ◽  
Hanna Zborowska ◽  
Artur Jakimiuk ◽  
Ewa Skarżyńska

AbstractEstablishing any characteristic associations between the serum parameters of thyroid function and serum proteins in pregnancy may aid in elucidating the role of the thyroid gland in the regulation of pregnancy-specific metabolic processes and in selecting candidate biomarkers for use in their clinical assessment. Concentrations of thyroid stimulating hormone (TSH), free tri-iodothyronine (fT3) and free thyroxine (fT4), six electrophoretically separated protein fractions (albumin, alpha-1-, alpha2-, beta-1-, beta-2- and gamma-globulins), representative proteins—albumin (ALB), transferrin (TRF), alpha-2-macroglobulin (AMG) and ceruloplasmin (CER) were measured in 136 serum samples from 65 women in their consecutive trimesters of pregnancy. The concentrations of TSH, fT4 and fT3 were significantly correlated (p < 0.05) with the concentrations of the albumin, alpha-2- and beta-1 globulin fractions. Significant correlations (p < 0.05) which were positive between fT4 and ALB and negative between fT4 and TRF were established throughout pregnancy. Significant negative correlations (p < 0.05) were demonstrated for fT3 with alpha-2-globulin, AMG and CER. Changes in the serum concentrations of thyroid hormones seen between the trimesters were found to correlate with the concentrations of high-abundance serum proteins. Opposite directions of correlations between fT4 and ALB and fT4 and TRF observed throughout pregnancy may indicate the shared biological role of these parameters in maintaining maternal homeostasis and they suggest their potential use in the clinic as a simple biomarker panel. A negative correlation of fT3 with CER in the second trimester possibly reflects their involvement in the active regulation of metabolic processes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lesley Cheng ◽  
Camelia Quek ◽  
Xia Li ◽  
Shayne A. Bellingham ◽  
Laura J. Ellett ◽  
...  

AbstractPrion diseases are distinguished by long pre-clinical incubation periods during which prions actively propagate in the brain and cause neurodegeneration. In the pre-clinical stage, we hypothesize that upon prion infection, transcriptional changes occur that can lead to early neurodegeneration. A longitudinal analysis of miRNAs in pre-clinical and clinical forms of murine prion disease demonstrated dynamic expression changes during disease progression in the affected thalamus region and serum. Serum samples at each timepoint were collected whereby extracellular vesicles (EVs) were isolated and used to identify blood-based biomarkers reflective of pathology in the brain. Differentially expressed EV miRNAs were validated in human clinical samples from patients with human sporadic Creutzfeldt-Jakob disease (sCJD), with the molecular subtype at codon 129 either methionine-methionine (MM, n = 14) or valine-valine (VV, n = 12) compared to controls (n = 20). EV miRNA biomarkers associated with prion infection predicted sCJD with an AUC of 0.800 (85% sensitivity and 66.7% specificity) in a second independent validation cohort (n = 26) of sCJD and control patients with MM or VV subtype. This study discovered clinically relevant miRNAs that benefit diagnostic development to detect prion-related diseases and therapeutic development to inhibit prion infectivity.


Author(s):  
M A Jenkins ◽  
M D Guerin

Capillary electrophoresis is a technique that can be automated for the separation of charged particles. By investigating suitable sample dilution and injection time and adhering to a strict washing procedure we have been able to quantify paraproteins in serum samples. This has enabled us to use the technique of capillary electrophoresis for the provision of serum protein electrophoresis in a routine clinical laboratory. We present our findings of 260 serum samples, which included 76 samples with paraproteins analysed by both capillary electrophoresis (EC) and high resolution agarose gel electrophoresis (HRAGE). CE was able to detect all the monoclonal bands detected by HRAGE, and, in particular, better able to detect IgA monoclonal bands occurring in the beta region. The major advantages of CE over HRAGE relate to the automated nature of CE with the elimination of the need for a densitometer.


1992 ◽  
Vol 8 (6) ◽  
pp. 407-413 ◽  
Author(s):  
Adam B. Czuppon ◽  
Boleslaw Marczynski ◽  
Xaver Baur

Serum samples of 10 workers undergoing occupational type inhalative challenge tests by toluene diisocyanate (TDI) were investigated by anion-exchange fast-protein-liquid-chromatography (FPLC) and polyacrylamide-gel electrophoresis (PAGE-SDS). Their serum chromatography profiles were compared to those of 20 unexposed individuals. The peak height of the first prealbumin peak in sera of workers after inhalative challenge tests was significantly different (p > 0, 01 Chi-square test) compared to that obtained before exposure and to that of unexposed subjects. In addition, qualitative changes of these peaks were also noted in sera of workers exposed to TDI. In the cases of exposed individuals, that peak was more diffuse with some shoulders and less symmetric in appearance. Similarly, PAGE-SDS of the serum proteins, followed by silver nitrate staining, revealed a different banding pattern after in vivo TDI exposure. One of the serum components at approximately 15 kD showed an increase of staining intensity after exposure (n = 10), compared to unexposed subjects or to patients before exposure. This serum fraction has not yet been identified. The results here demonstrate that it is possible to detect changes of serum proteins in TDI-exposed individuals within a relatively short analysis time. This could be useful for biological monitoring of exposure, since no method for such is yet available.


1984 ◽  
Vol 247 (5) ◽  
pp. R842-R849 ◽  
Author(s):  
M. Stefanelli ◽  
D. P. Bentley ◽  
I. Cavill ◽  
H. P. Roeser

Reticuloendothelial iron kinetics were investigated in a simultaneous dual-isotope study in 10 healthy adult subjects in whom 55Fe-ferric hydroxide phosphate colloid was used to label the reticuloendothelial iron pools, and 59Fe-transferrin was used to define plasma iron kinetics. The simultaneous clearance of 55Fe and 59Fe from plasma and the uptake of each into red blood cells were measured over 14 days. The 55Fe-colloid was cleared almost immediately, and its iron was rapidly released to bind to plasma transferrin. Red cell incorporation of 55Fe was, however, much slower than that of 59Fe bound to transferrin in vitro. The data were analyzed by a new model of reticuloendothelial iron metabolism that contained two reticuloendothelial iron pools; one had a rapid turnover and donated iron to transferrin, and the other, a storage pool, had a slower turnover. The transit pool contained a mean of 164 mumol iron with little variation between subjects, whereas the storage pool was somewhat larger (mean 873 mumol iron) and showed more marked variation between subjects. In general an equal proportion of the iron leaving the transit pool went to transferrin and to the storage pool. The distribution between the two routes did not appear to be related either to plasma iron concentration, latent iron-binding capacity, or transferrin saturation.


2020 ◽  
Vol 21 (15) ◽  
pp. 5359 ◽  
Author(s):  
Gabriella Dobra ◽  
Matyas Bukva ◽  
Zoltan Szabo ◽  
Bella Bruszel ◽  
Maria Harmati ◽  
...  

Liquid biopsy-based methods to test biomarkers (e.g., serum proteins and extracellular vesicles) may help to monitor brain tumors. In this proteomics-based study, we aimed to identify a characteristic protein fingerprint associated with central nervous system (CNS) tumors. Overall, 96 human serum samples were obtained from four patient groups, namely glioblastoma multiforme (GBM), non-small-cell lung cancer brain metastasis (BM), meningioma (M) and lumbar disc hernia patients (CTRL). After the isolation and characterization of small extracellular vesicles (sEVs) by nanoparticle tracking analysis (NTA) and atomic force microscopy (AFM), liquid chromatography -mass spectrometry (LC-MS) was performed on two different sample types (whole serum and serum sEVs). Statistical analyses (ratio, Cohen’s d, receiver operating characteristic; ROC) were carried out to compare patient groups. To recognize differences between the two sample types, pairwise comparisons (Welch’s test) and ingenuity pathway analysis (IPA) were performed. According to our knowledge, this is the first study that compares the proteome of whole serum and serum-derived sEVs. From the 311 proteins identified, 10 whole serum proteins and 17 sEV proteins showed the highest intergroup differences. Sixty-five proteins were significantly enriched in sEV samples, while 129 proteins were significantly depleted compared to whole serum. Based on principal component analysis (PCA) analyses, sEVs are more suitable to discriminate between the patient groups. Our results support that sEVs have greater potential to monitor CNS tumors, than whole serum.


Sign in / Sign up

Export Citation Format

Share Document