scholarly journals Neurological, neuropsychiatric and neurodevelopmental complications of COVID-19

2020 ◽  
pp. 000486742096147
Author(s):  
Christos Pantelis ◽  
Mahesh Jayaram ◽  
Anthony J Hannan ◽  
Robb Wesselingh ◽  
Jess Nithianantharajah ◽  
...  

Although COVID-19 is predominantly a respiratory disease, it is known to affect multiple organ systems. In this article, we highlight the impact of SARS-CoV-2 (the coronavirus causing COVID-19) on the central nervous system as there is an urgent need to understand the longitudinal impacts of COVID-19 on brain function, behaviour and cognition. Furthermore, we address the possibility of intergenerational impacts of COVID-19 on the brain, potentially via both maternal and paternal routes. Evidence from preclinical models of earlier coronaviruses has shown direct viral infiltration across the blood–brain barrier and indirect secondary effects due to other organ pathology and inflammation. In the most severely ill patients with pneumonia requiring intensive care, there appears to be additional severe inflammatory response and associated thrombophilia with widespread organ damage, including the brain. Maternal viral (and other) infections during pregnancy can affect the offspring, with greater incidence of neurodevelopmental disorders, such as autism, schizophrenia and epilepsy. Available reports suggest possible vertical transmission of SARS-CoV-2, although longitudinal cohort studies of such offspring are needed. The impact of paternal infection on the offspring and intergenerational effects should also be considered. Research targeted at mechanistic insights into all aspects of pathogenesis, including neurological, neuropsychiatric and haematological systems alongside pulmonary pathology, will be critical in informing future therapeutic approaches. With these future challenges in mind, we highlight the importance of national and international collaborative efforts to gather the required clinical and preclinical data to effectively address the possible long-term sequelae of this global pandemic, particularly with respect to the brain and mental health.

2020 ◽  
Vol 7 ◽  
Author(s):  
Georgina M. Ellison-Hughes ◽  
Liam Colley ◽  
Katie A. O'Brien ◽  
Kirsty A. Roberts ◽  
Thomas A. Agbaedeng ◽  
...  

The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has led to 47 m infected cases and 1. 2 m (2.6%) deaths. A hallmark of more severe cases of SARS-CoV-2 in patients with acute respiratory distress syndrome (ARDS) appears to be a virally-induced over-activation or unregulated response of the immune system, termed a “cytokine storm,” featuring elevated levels of pro-inflammatory cytokines such as IL-2, IL-6, IL-7, IL-22, CXCL10, and TNFα. Whilst the lungs are the primary site of infection for SARS-CoV-2, in more severe cases its effects can be detected in multiple organ systems. Indeed, many COVID-19 positive patients develop cardiovascular complications, such as myocardial injury, myocarditis, cardiac arrhythmia, and thromboembolism, which are associated with higher mortality. Drug and cell therapies targeting immunosuppression have been suggested to help combat the cytokine storm. In particular, mesenchymal stromal cells (MSCs), owing to their powerful immunomodulatory ability, have shown promise in early clinical studies to avoid, prevent or attenuate the cytokine storm. In this review, we will discuss the mechanistic underpinnings of the cytokine storm on the cardiovascular system, and how MSCs potentially attenuate the damage caused by the cytokine storm induced by COVID-19. We will also address how MSC transplantation could alleviate the long-term complications seen in some COVID-19 patients, such as improving tissue repair and regeneration.


2021 ◽  
Vol 218 (3) ◽  
Author(s):  
Eric Song ◽  
Ce Zhang ◽  
Benjamin Israelow ◽  
Alice Lu-Culligan ◽  
Alba Vieites Prado ◽  
...  

Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus on the consequences of CNS infections. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in infected and neighboring neurons. However, no evidence for type I interferon responses was detected. We demonstrate that neuronal infection can be prevented by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate SARS-CoV-2 neuroinvasion in vivo. Finally, in autopsies from patients who died of COVID-19, we detect SARS-CoV-2 in cortical neurons and note pathological features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV-2 and an unexpected consequence of direct infection of neurons by SARS-CoV-2.


2021 ◽  
pp. 1-8
Author(s):  
Avantika Samkaria ◽  
Khushboo Punjabi ◽  
Shallu Sharma ◽  
Shallu Joon ◽  
Kanika Sandal ◽  
...  

Coronavirus (COVID-19) has emerged as a human catastrophe worldwide, and it has impacted human life more detrimentally than the combined effect of World Wars I and II. Various research studies reported that the disease is not confined to the respiratory system but also leads to neurological and neuropsychiatric disorders suggesting that the virus is potent to affect the central nervous system (CNS). Moreover, the damage to CNS may continue to rise even after the COVID-19 infection subsides which may further induce a long-term impact on the brain, resulting in cognitive impairment. Neuroimaging techniques provide the ability to detect and quantify pathological manifestations in the brain of COVID-19 survivors. In this context, a scheme based on structural, spectroscopic, and behavioral studies could be executed to monitor the gradual changes in the brain non-invasively due to COVID-19 which may further help in quantifying the impact of COVID-19 on the mental health of the survivors. Extensive research is required in this direction for identifying the mechanism and implications of COVID-19 in the brain. Additionally, longitudinal follow-up studies are also needed to perform for monitoring the effects of this pandemic on individuals over a prolonged period.


Author(s):  
Eric Song ◽  
Ce Zhang ◽  
Benjamin Israelow ◽  
Alice Lu-Culligan ◽  
Alba Vieites Prado ◽  
...  

SummaryAlthough COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus whether the virus can infect the brain, or what the consequences of CNS infection are. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in the infected and neighboring neurons. However, no evidence for the type I interferon responses was detected. We demonstrate that neuronal infection can be prevented either by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate in vivo that SARS-CoV-2 neuroinvasion, but not respiratory infection, is associated with mortality. Finally, in brain autopsy from patients who died of COVID-19, we detect SARS-CoV-2 in the cortical neurons, and note pathologic features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV2, and an unexpected consequence of direct infection of neurons by SARS-CoV-2.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Shawn Hayley ◽  
Hongyu Sun

AbstractIt is well accepted that environmental stressors experienced over a one’s life, from microbial infections to chemical toxicants to even psychological stressors, ultimately shape central nervous system (CNS) functioning but can also contribute to its eventual breakdown. The severity, timing and type of such environmental “hits”, woven together with genetic factors, likely determine what CNS outcomes become apparent. This focused review assesses the current COVID-19 pandemic through the lens of a multi-hit framework and disuses how the SARS-COV-2 virus (causative agent) might impact the brain and potentially interact with other environmental insults. What the long-term consequences of SAR2 COV-2 upon neuronal processes is yet unclear, but emerging evidence is suggesting the possibility of microglial or other inflammatory factors as potentially contributing to neurodegenerative illnesses. Finally, it is critical to consider the impact of the virus in the context of the substantial psychosocial stress that has been associated with the global pandemic. Indeed, the loneliness, fear to the future and loss of social support alone has exerted a massive impact upon individuals, especially the vulnerable very young and the elderly. The substantial upswing in depression, anxiety and eating disorders is evidence of this and in the years to come, this might be matched by a similar spike in dementia, as well as motor and cognitive neurodegenerative diseases.


Author(s):  
Christian Muschitz ◽  
Anita Trummert ◽  
Theresa Berent ◽  
Norbert Laimer ◽  
Lukas Knoblich ◽  
...  

SummarySevere acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), produces protean manifestations and causes indiscriminate havoc in multiple organ systems. This rapid and vast production of proinflammatory cytokines contributes to a condition termed cytokine storm. A 35-year-old, otherwise healthy, employed, male patient was tested positive for COVID-19. He was admitted to the hospital on disease day 10 due to retarded verbal reactions and progressive delirium. On account of these conditions and the need for noninvasive/invasive ventilation, a combination treatment with baricitinib and remdesivir in conjunction with standard of care was initiated. The cytokine storm was rapidly blocked, leading to a vast pulmonary recovery with retarded recovery of the central nervous system. We conclude that the rapid blockade of the COVID-19-induced cytokine storm should be considered of avail as a principle of careful decision-making for effective recovery.


Author(s):  
Zana Stanic ◽  
Marko Vulic ◽  
Zlatko Hrgovic ◽  
Rajko Fureš ◽  
Milvija Plazibat ◽  
...  

AbstractThe majority of patients with simultaneous pancreas and kidney transplant (SPKT) required transplantation owing to a long-standing history of insulin-dependent diabetes mellitus (IDDM). The disease causes multiple organ damage, impairs fertility, and affects quality of life. A successful kidney and pancreas transplant can improve health, ameliorate the consequences of pre-existent diabetes, and restore fertility. Good graft function, without any sign of rejection, and stable doses of immunosuppressant drugs are of utmost importance prior to the planned pregnancy. SPKT recipients who become pregnant may be at an increased risk for an adverse outcome and require meticulous multidisciplinary surveillance. We present experiences with SPKT pregnancies, traditional approaches, and recent considerations. In light of complex interactions between new anatomic relations and the impact of developing pregnancy and immunosuppressive medications, special stress is put on the risk of graft rejection, development of pregnancy complications, and potential harmful effects on fetal development. Recent recommendations in management of SPKT recipients who wish to commence pregnancy are presented as well. Key words: transplantation, pregnancy, pancreas, kidney, simultaneous pancreas and kidney transplantation (SPKT)


Author(s):  
M. S. Chafi ◽  
V. Dirisala ◽  
G. Karami ◽  
M. Ziejewski

In the central nervous system, the subarachnoid space is the interval between the arachnoid membrane and the pia mater. It is filled with a clear, watery liquid called cerebrospinal fluid (CSF). The CSF buffers the brain against mechanical shocks and creates buoyancy to protect it from the forces of gravity. The relative motion of the brain due to a simultaneous loading is caused because the skull and brain have different densities and the CSF surrounds the brain. The impact experiments are usually carried out on cadavers with no CSF included because of the autolysis. Even in the cadaveric head impact experiments by Hardy et al. [1], where the specimens are repressurized using artificial CSF, this is not known how far this can replicate the real functionality of CSF. With such motivation, a special interest lies on how to model this feature in a finite element (FE) modeling of the human head because it is questionable if one uses in vivo CSF properties (i.e. bulk modulus of 2.19 GPa) to validate a FE human head against cadaveric experimental data.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Karin Ljubič ◽  
Iztok Fister ◽  
Iztok Fister

Congenital central hypoventilation syndrome is a disorder predisposed by a paired-like homebox PHOX2B gene. A mutation in the PHOX2B gene is a requisite when diagnosing congenital central hypoventilation syndrome. This mutation is identified in 93–100% of diagnosed patients. The mutation regarding this disorder affects the sensors, the central controller, and the integration of the signals within the central nervous system. This, inter alia, leads to insufficient ventilation and a decrease in PaO2, as well as an increase in PaCO2. Affected children are at risk during and after the neonatal period. They suffer from hypoventilation periods which may be present whilst sleeping only or in more severe cases when both asleep and awake. It is important for clinicians to perform an early diagnosis of congenital central hypoventilation in order to prevent the deleterious effects of hypoxaemia, hypercapnia, and acidosis on the neurocognitive and cardiovascular functions. Patients need long-term management and appropriate ventilatory support for improving the qualities of their lives. This paper provides a detailed review of congenital central hypoventilation syndrome, a congenital disorder that is genetic in origin. We describe the genetic basis, the wider clinical picture, and those challenges during the diagnosis and management of patients with this condition.


2017 ◽  
Vol 23 (6) ◽  
pp. 587-604 ◽  
Author(s):  
Julien Gibon ◽  
Philip A. Barker

Neurotrophins have been intensively studied and have multiple roles in the brain. Neurotrophins are first synthetized as proneurotrophins and then cleaved intracellularly and extracellularly. Increasing evidences demonstrate that proneurotrophins and mature neurotrophins exerts opposing role in the central nervous system. In the present review, we explore the role of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) and their respective proform in cellular processes related to learning and memory. We focused on their roles in synaptic activity and plasticity in the brain with an emphasis on long-term potentiation, long-term depression, and basal synaptic transmission in the hippocampus and the temporal lobe area. We also discuss new findings on the role of the Val66Met polymorphism on the BDNF propeptide on synaptic activity.


Sign in / Sign up

Export Citation Format

Share Document