scholarly journals Aging: Older Adults’ Driving Behavior Using Longitudinal and Lateral Warning Systems

Author(s):  
Dustin J. Souders ◽  
Neil Charness ◽  
Nelson A. Roque ◽  
Hellen Pham

Objective This study assessed older drivers’ driving behavior when using longitudinal and lateral vehicle warning systems together. Background Advanced driver assistance systems (ADAS) can benefit drivers of all ages. Previous research with younger to middle-aged samples suggests that safety benefits are not necessarily additive with additional ADAS. Increases in following distance associated with the use of forward collision warning (FCW) decreased when drivers also used lane departure warning (LDW), likely due to attending to the LDW more than the FCW. Method The current study used a driving simulator to provide 128 older drivers experience with FCW and/or LDW system(s) during a ~25-min drive to gauge their usage’s effects on driving performance and subjective workload. Results There were no significant differences found in headway distance between older drivers who used different combinations of FCW and LDW systems, but those who used an FCW system showed significantly longer time-to-collision (TTC) when approaching the critical event than those who did not. Users of LDW systems did not show reductions in standard deviation of lane position. Analyses of subjective workload measures showed no significant differences between conditions. Conclusion Findings suggest that FCW could increase older drivers’ TTC over the course of a drive. Contrary to previous findings in younger samples, concurrent use of FCW and LDW systems did not adversely affect older drivers’ longitudinal driving performance and subjective workload. Application Potential applications of this research include the assessment of older drivers’ use of vehicle warning systems and their effects on subjective workload.

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 555-555
Author(s):  
Neil Charness ◽  
Dustin Souders ◽  
Ryan Best ◽  
Nelson Roque ◽  
JongSung Yoon ◽  
...  

Abstract Older adults are at greater risk of death and serious injury in transportation crashes which have been increasing in older adult cohorts relative to younger cohorts. Can technology provide a safer road environment? Even if technology can mitigate crash risk, is it acceptable to older road users? We outline the results from several studies that tested 1) whether advanced driver assistance systems (ADAS) can improve older adult driving performance, 2) older adults’ acceptance of ADAS and Autonomous Vehicle (AV) systems, and 3) perceptions of value for ADAS systems, particularly for blind-spot detection systems. We found that collision avoidance warning systems improved older adult simulator driving performance, but not lane departure warning systems. In a young to middle-aged sample the factor “concern with AV” showed age effects with older drivers less favorable. Older drivers, however, valued an active blind spot detection system more than younger drivers.


Author(s):  
Sonia Ortiz-Peregrina ◽  
Carolina Ortiz ◽  
Miriam Casares-López ◽  
José J. Castro-Torres ◽  
Luis Jiménez del Barco ◽  
...  

Aging leads to impaired visual function, which can affect driving—a very visually demanding task—and has a direct impact on an individual’s quality of life if their license is withdrawn. This study examined the associations between age-related vision changes and simulated driving performance. To this end, we attempted to determine the most significant visual parameters in terms of evaluating elderly drivers’ eyesight. Twenty-one younger drivers (aged 25–40) were compared to 21 older drivers (aged 56–71). Study participants were assessed for visual acuity, contrast sensitivity, halos, and intraocular straylight, which causes veiling luminance on the retina and degrades vision. Driving performance was evaluated using a driving simulator. The relationships between simulated driving performance and the visual parameters tested were examined with correlation analyses and linear regression models. Older drivers presented impairment in most visual parameters (p < 0.05), with straylight being the most significantly affected (we also measured the associated effect size). Older drivers performed significantly worse (p < 0.05) in the simulator test, with a markedly lower performance in lane stability. The results of the multiple linear regression model evidenced that intraocular straylight is the best visual parameter for predicting simulated driving performance (R2 = 0.513). Older drivers have shown significantly poorer results in several aspects of visual function, as well as difficulties in driving simulator performance. Our results suggest that the non-standardized straylight evaluation could be significant in driver assessments, especially at the onset of age-related vision changes.


2020 ◽  
Vol 12 (5) ◽  
pp. 1971 ◽  
Author(s):  
Sónia Soares ◽  
Tiago Monteiro ◽  
António Lobo ◽  
António Couto ◽  
Liliana Cunha ◽  
...  

Drowsiness and fatigue are major safety issues that cannot be measured directly. Their measurements are sustained on indirect parameters such as the effects on driving performance, changes in physiological states, and subjective measures. We divided this study into two distinct lines. First, we wanted to find if any driver’s physiological characteristic, habit, or recent event could interfere with the results. Second, we aimed to analyze the effects of subjective sleepiness on driving behavior. On driving simulator experiments, the driver information and driving performance were collected, and responses to the Karolinska Sleepiness Scale (KSS) were compared with these parameters. The results showed that drowsiness increases when the driver has suffered a recent stress situation, has taken medication, or has slept fewer hours. An increasing driving time is also a strong factor in drowsiness development. On the other hand, robustness, smoking habits, being older, and being a man were revealed to be factors that make the participant less prone to getting drowsy. From another point of view, the speed and lane departures increased with the sleepiness feeling. Subjective drowsiness has a great correlation to drivers’ personal aspects and the driving behavior. In addition, the KSS shows a great potential to be used as a predictor of drowsiness.


Author(s):  
J.K. Caird ◽  
J. Chugh

The principle advantage of a head-up display (HUD) is that a driver does not have to take their eyes off the road. However, the advantage afforded by a HUD may be lost when surprising or unexpected events occur in the traffic environment. This study sought to determine the time-costs for elderly drivers associated with responses to the appearance of a pedestrian (critical event) while engaged in a HUD task. Sixteen older drivers (65 to 81, Mean = 73) interacted with a number of tasks presented in a low-cost driving simulator. Critical event onset after engaging in a HUD task (+100, +250, +1000 ms), display location (head-up, head-down), tracking difficulty (easy, hard), and display type (visual search, verbal memory) were the within-subjects variables. Analyses of perception-response time (PRT) and missed events (error) indicate that braking to a critical event, while performing a display task, is affected by the interaction between the temporal and spatial limitations of visual attention. HUD design and safety issues are briefly considered.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Sooncheon Hwang ◽  
Sunhoon Kim ◽  
Dongmin Lee

There is currently much debate regarding the effectiveness of the driver license system in South Korea, due to the numerous traffic crashes caused by drivers who are suspected of having insufficient physical and mental abilities. Through the present system, it is quite difficult to identify such drivers indirectly through physical tests, such as visual acuity tests, since the correlation of such results with driving performance remains unclear. The objective of this study was to investigate the relationship between driving performance and visual acuities for improving the South Korean driver license system. In this study, two investigations were conducted: static and dynamic visual acuity examinations and driving performance tests based on a virtual reality (VR) system. The driving performance was evaluated with a driving simulator, based on driving behaviors in different experimental scenarios, including daytime and nighttime driving on a rural highway, and unexpected incident situations. Here, we produce statistically significant evidence that reduced visual acuity impairs driving performance, and driving behaviors differ significantly among groups with different vision capabilities, especially dynamic vision. Visual acuities, typically dynamic visual acuity, greatly influenced driving behavior, as measured by the standard deviation of speeds and vehicle LPs, and this was especially notable in curved road segments in daytime experiment. These experimental results revealed that the driving performance of participants with impaired dynamic visual acuity was deficient and unsafe. This confirmed that dynamic visual acuity levels are significant determinants of driving behavior, and they well explain driver performance levels. These findings suggest that the South Korean driver license system should include a test of dynamic visual acuity to create better and safer driving.


Author(s):  
West M. O’Brien ◽  
Xingwei Wu ◽  
Linda Ng Boyle

Collision warning systems alert drivers of potential safety hazards. Forward collision warning (FCW) systems have been widely implemented and studied. However, intersection collision warning systems (ICWS), such as intersection movement assist (IMA), are more complex. Additional studies are needed to identify the best alert for directing the driver toward the hazard. A driving simulator study with 48 participants was conducted to examine three speech-based auditory alerts (general, directional, and command) in a simulated red light running (RLR) collision scenario. The command alert that informed the drivers to brake was the most effective in reducing the number of collisions. The post-drive questionnaire showed that drivers also rated the brake alert to be best in terms of interpretation (based on the Kruskal Wallis test). This study provides insight into the performance of different types of speech-based alerts for an intersection collision warning system and can provide guidance for future studies.


Author(s):  
Gianclaudio Casutt ◽  
Nathan Theill ◽  
Mike Martin ◽  
Martin Keller ◽  
Lutz Jäncke

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
David E. Anderson ◽  
John P. Bader ◽  
Emily A. Boes ◽  
Meghal Gagrani ◽  
Lynette M. Smith ◽  
...  

Abstract Background Driving simulators are a safe alternative to on-road vehicles for studying driving behavior in glaucoma drivers. Visual field (VF) loss severity is associated with higher driving simulator crash risk, though mechanisms explaining this relationship remain unknown. Furthermore, associations between driving behavior and neurocognitive performance in glaucoma are unexplored. Here, we evaluated the hypothesis that VF loss severity and neurocognitive performance interact to influence simulated vehicle control in glaucoma drivers. Methods Glaucoma patients (n = 25) and suspects (n = 18) were recruited into the study. All had > 20/40 corrected visual acuity in each eye and were experienced field takers with at least three stable (reliability > 20%) fields over the last 2 years. Diagnosis of neurological disorder or cognitive impairment were exclusion criteria. Binocular VFs were derived from monocular Humphrey VFs to estimate a binocular VF index (OU-VFI). Montreal Cognitive Assessment (MoCA) was administered to assess global and sub-domain neurocognitive performance. National Eye Institute Visual Function Questionnaire (NEI-VFQ) was administered to assess peripheral vision and driving difficulties sub-scores. Driving performance was evaluated using a driving simulator with a 290° panoramic field of view constructed around a full-sized automotive cab. Vehicle control metrics, such as lateral acceleration variability and steering wheel variability, were calculated from vehicle sensor data while patients drove on a straight two-lane rural road. Linear mixed models were constructed to evaluate associations between driving performance and clinical characteristics. Results Patients were 9.5 years older than suspects (p = 0.015). OU-VFI in the glaucoma group ranged from 24 to 98% (85.6 ± 18.3; M ± SD). OU-VFI (p = .0066) was associated with MoCA total (p = .0066) and visuo-spatial and executive function sub-domain scores (p = .012). During driving simulation, patients showed greater steering wheel variability (p = 0.0001) and lateral acceleration variability (p < .0001) relative to suspects. Greater steering wheel variability was independently associated with OU-VFI (p = .0069), MoCA total scores (p = 0.028), and VFQ driving sub-scores (p = 0.0087), but not age (p = 0.61). Conclusions Poor vehicle control was independently associated with greater VF loss and worse neurocognitive performance, suggesting both factors contribute to information processing models of driving performance in glaucoma. Future research must demonstrate the external validity of current findings to on-road performance in glaucoma.


Author(s):  
Liu Yang ◽  
Zhengbing He ◽  
Wei Guan ◽  
Shixiong Jiang

Driving behavior studies based on electroencephalography (EEG) have mostly investigated the relationship between various risky driving behaviors and brain activity, while only a few studies have discussed the relationship between ordinary driving behavior (drivers’ behavior in normal situations) and brain activity. To bridge the gap, we conducted a driving simulator experiment to collect data on ordinary driving behavior, including acceleration, space headway, speed, time headway, lane deviation, and amplitude of steering wheel movements. At the same time, the amplitude, log-transformed power (LTP), and power spectral density of EEG were extracted as EEG features. The quantitative relationships between ordinary driving behavior features and EEG features were investigated, where power spectrum analysis was performed to process EEG signals and Pearson correlation analysis was utilized for statistical analysis. The results indicated that ordinary driving behavior relates to all four brain regions, especially the temporal, occipital, and frontal regions. β-LTP was found to be most relevant to ordinary driving behavior. Furthermore, acceleration, speed, and space headway may have potential correlation with EEG features (e.g., β-LTP). These findings improve our understanding of the correlation between brain activity and driving behavior, and show potential for application in transportation safety, such as advanced driver assistance systems design.


Author(s):  
Lisa Graichen ◽  
Matthias Graichen ◽  
Josef F. Krems

Objective We observe the driving performance effects of gesture-based interaction (GBI) versus touch-based interaction (TBI) for in-vehicle information systems (IVISs). Background As a contributing factor to a number of traffic accidents, driver distraction is a significant problem for traffic safety. More specifically, visual distraction has a strong negative impact on driving performance and risk perception. Thus, the implementation of new interaction systems that use midair gestures to encourage glance-free interactions could reduce visual distraction among drivers. Methods In this experiment, participants drove a projection-based Vehicle-in-the-Loop. The projection-based technology combines a visual simulation with kinesthetic, vestibular, and auditory feedback from a car on a test track. While driving, participants used GBI or TBI to perform IVIS tasks. To investigate driving behavior related to critical driving situations and car-following maneuvers, vehicle data based upon longitudinal and lateral driving were collected. Results Participants reacted faster to critical driving situations when using GBI compared to TBI. For drivers using TBI, steering performance decreased and time headway to a preceding vehicle was higher. Conclusion Gestures provide a safe alternative to in-vehicle interactions. Moreover, GBI has fewer effects on driver distraction than TBI. Application Potential applications of this research include all in-vehicle interaction systems used by drivers.


Sign in / Sign up

Export Citation Format

Share Document