A Digital Proportional Position Control Scheme

1978 ◽  
Vol 15 (1) ◽  
pp. 77-81
Author(s):  
R. Subbayyan ◽  
M. C. Vaithilingam ◽  
G. Lakshmanna

This paper describes the principles and fabrication details of a digital proportional position controller using a synchro resolver as position transducer. The digital controller can be readily attached to existing analog position servo demonstration units available in educational laboratories.

2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Ji Min Lee ◽  
Sung Hwan Park ◽  
Jong Shik Kim

A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1000
Author(s):  
Kiwan Cho ◽  
Dong-Hee Lee

This paper presents the design and position control scheme of an overhang-type rail mover system driven by a dual Brushless AC (BLAC) motor with a simple Hall position sensor inside each motor. The overhang-type roller is chosen to reduce the slip between the roller and rail surface due to gravity. The BLAC motors are used to provide smooth translation along the rail and effective turning. Imbalances on any part of the motor and the simplicity of the Hall position sensor can create additional disturbance load, unsteady movement, and position errors. To reduce the sudden moving position error between the two motors, a balancing compensator with a Proportional-Differential (PD) position controller, which is based on the instantaneous speed and position trajectories, is presented. Furthermore, speed and position reference models are designed to compensate for the low Hall sensor resolution in the low-speed range. Therefore, steady-state position errors can then be regulated simply by using the instantaneous speed and position information. Experiments were performed to verify the viability of the proposed system and control. The results show a significant improvement in roller translation along the rail and stopping position accuracy.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 457
Author(s):  
Hyeong-Jin Kim ◽  
Yung-Deug Son ◽  
Jang-Mok Kim

An exhaust gas recirculation (EGR) valve position control system requires fast response without overshoot, but the low control frequency limits control bandwidth and results in poor position response. A novel EGR valve position control scheme is proposed to improve the position response at low control frequency. This is based on the feedforward controller, but the feedforward control loop is implemented without the position pattern generator or derivative. The proposed method estimates the acceleration command through the relationship between the position controller output, the speed command and the speed limiter, and compensates the cascaded proportional-proportional integral (P-PI) controller. In this method, many operations are not required and noise due to derivative is not generated. This method can improve the position response without much computation and derivative noise at the low control frequency. Experimental results are presented to verify the feasibility of the proposed position control algorithm.


Author(s):  
Qixin Zhu ◽  
Lei Xiong ◽  
Hongli Liu ◽  
Yonghong Zhu ◽  
Guoping Zhang

Background: The conventional method using one-degree-of-freedom (1DOF) controller for Permanent Magnet Synchronous Motor (PMSM) servo system has the trade-off problem between the dynamic performance and the robustness. Methods: In this paper, by using H∞ control theory, a novel robust two-degree-of-freedom (2DOF) controller has been proposed to improve the position control performance of PMSM servo system. Using robust control theory and 2DOF control theory, a H∞ robust position controller has been designed and discussed in detail. Results: The trade-off problem between the dynamic performance and robustness which exists in one-degree-of-freedom (1DOF) control can be dealt with by the application of 2DOF control theory. Then, through H∞ control theory, the design of robust position controller can be translated to H∞ robust standard design problem. Moreover, the control system with robust controller has been proved to be stable. Conclusion: Further simulation results demonstrate that compared with the conventional PID control, the designed control system has better robustness and attenuation to the disturbance of load impact.


Author(s):  
Lihua Huang ◽  
Ryan Ryan Steger ◽  
H. Kazerooni

The first functional load-carrying and energetically autonomous exoskeleton was demonstrated at U.C. Berkeley, walking at the average speed of 0.9 m/s (2 mph) while carrying a 34 kg (75 lb) payload. The original BLEEX sensitivity amplification controller, based on positive feedback, was designed to increase the closed loop system sensitivity to its wearer’s forces and torques without any direct measurement from the wearer. The controller was successful at allowing natural and unobstructed load support for the pilot. This article presents an improved control scheme we call “mixed” control that adds robustness to changing BLEEX backpack payload. The walking gait cycle is divided into stance control and swing control phases. Position control is used for the BLEEX stance leg (including torso and backpack) and the sensitivity amplification controller is used for the swing leg. The controller is also designed to smoothly transitions between these two schemes as the pilot walks. With mixed control, the controller does not require a good model of the BLEEX torso and payload, which is difficult to obtain and subject to change as payload is added and removed. As a tradeoff, the position control used in this method requires the human to wear seven inclinometers to measure human limb and torso angles. These additional sensors require careful design to securely fasten them to the human and increase the time to don (and doff) BLEEX.


2013 ◽  
Vol 765-767 ◽  
pp. 1920-1923
Author(s):  
Li Jiang ◽  
Yang Zhou ◽  
Bin Wang ◽  
Chao Yu

A novel approach to impedance control based on the object is proposed to control dual-arm systems with senseless force. Considering the motion of the object, the statics and dynamics of the dual-arm systems are modeled. Extending the dynamics of dual-arm system and the impedance of object to the operational space, impedance control with senseless force is presented. Simulations on a dual-arm system are carried out to demonstrate the performance of the proposed control scheme. Comparing with position control, results of numerical simulations show that the proposed scheme realizes suitable compliant behaviors in terms of the object, and minimizes the error of the relative position between the manipulators even without force sensors.


2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Yang Wang ◽  
Lei Feng ◽  
Kjell Andersson

AbstractHaptic rendering often deals with interactions between stiff objects. A traditional way of force computing models the interaction using a spring-damper system, which suffers from stability issues when the desired stiffness is high. Instead of computing a force, this paper continues to explore shifting the focus to rendering an interaction with no penetration, which can be accomplished by using a position controller in the joint space using the encoders as feedback directly. In order to make this approach easily adaptable to any device, an alternative way to model the dynamics of the device is also presented, which is to linearize a detailed simulation model. As a family of linearized models is used to approximate the full dynamic model of the system, it is important to have a smooth transition between multiple sets of controller gains generated based on these models. Gain scheduling is introduced to improve the performance in certain areas and a comparison among three controllers is conducted in a simulation setup.


Sign in / Sign up

Export Citation Format

Share Document