Extraction and characterization of crystalline cellulose from jute fiber and application as reinforcement in biocomposite: Effect of gamma radiation

2016 ◽  
Vol 51 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Jahid MM Islam ◽  
Md Altaf Hossan ◽  
FR Alom ◽  
M Iqbal H Khan ◽  
Mubarak A Khan

In this study, crystalline cellulose was prepared through hydrolysis of jute fiber and was used as reinforcement of gelatin-based biocomposite film. The effects of crystalline celluloses loading on the morphology, mechanical properties and water sensitivity of the biocomposite were investigated by means of Scanning electron microscopy, tensile strength testing and water absorption testing. The developed biocomposite film showed homogeneous dispersion of crystalline celluloses within the gelatin matrix and strong interfacial adherence between matrix and reinforcement. A significant increase in tensile strength and E Modulus was also found (tensile strength was 25.4 MPa for pure gelatin and 48.2 MPa for 2% crystalline celluloses/gelatin film at 45% relative humidity), which was further induced by gamma radiation. The resulting biocomposite film also showed a higher water resistance and excellent biocompatibility. Therefore, crystalline celluloses played an important role in improving the mechanical properties as well as water resistance of the biocomposite film.

2019 ◽  
Vol 27 (4(136)) ◽  
pp. 88-93
Author(s):  
K.Z.M. Abdul Motaleb ◽  
Md Shariful Islam ◽  
Rimvydas Milašius

Two types of composites:(1) pineapple fabric reinforced polyester resin (Pineapple/PR) and (2) jute fabric reinforced polyester resin (Jute/PR) were prepared and the mechanical properties investigated for various gamma radiation doses ranging from 100-500 krad. Properties like tensile strength, Young’s modulus, elongation-at-break, bending strength, bending modulus and impact strength were increased significantly by 19%, 32%, 45%, 32%, 47% and 20%, respectively, at a dose of 300 krad for Pineapple/PR, and by 47%, 49%, 42%, 45%, 52% and 65%, respectively, at a dose of 200 krad for the Jute/PR composite in comparison to the non-irradiated composite. Gamma radiation improved the mechanical properties, but overdoses of radiation even caused a reduction in them.


2014 ◽  
Vol 27 (2) ◽  
pp. 77-82 ◽  
Author(s):  
H Ahmad ◽  
MA Islam ◽  
MF Uddin

Chopped jute fiber-epoxy composites with varying fiber length (2-12 mm) and mass fraction (0.05-0.35) had been prepared by a heat press unit. The cross-linked product was characterized in terms of specific gravity, thermal conductivity, tensile strength, Young modulus and elongation at break. The transverse thermal conductivities for randomly oriented fibers in the composite were investigated by Lees and Charlton’s method. The tensile strength, Young modulus and elongation at break were investigated by a Universal Tensile Tester. With an increase in the fiber content (irrespective of the fiber length), the thermal conductivity of the composite decreases; the decreasing rate being highest for the fiber length of 2 mm followed by that for the fiber length of 6 and 12 mm. The decreasing rate of the thermal conductivity of the jute-epoxy composite is comparatively higher to that reported in literature for acrylic polymer hemp fiber composite. The tensile strength also decreases with the increase of the fiber content in the composite. The fiber length does not show to have significant effect on the tensile strength of the composite; the variation in strength being masked within experimental error. The Young modulus increases with the increase of fiber content within elastic limit; showing the highest values for the fiber length of 6 mm followed by those for the fiber length of 2 mm and 12 mm. The elongation at break shows slightly increasing trend up to 15% fiber content, but beyond that it decreases drastically. The specific gravity decreases with the increase in the fiber content and thus the recalculated specific tensile strength is found to keep at a stable level of 36MPa up to the fiber content of 20%, and beyond that the specific tensile strength decreases with the increase in the fiber content. It is concluded that jute fiber-epoxy composite could be used as a good heat-insulating material. Further investigation is recommended on the improvement of the thermal insulation keeping the mechanical properties unchanged or even improved. The TGA study is also required to ascertain the field of application of the material. DOI: http://dx.doi.org/10.3329/jce.v27i2.17807 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 2, December 2012: 77-82


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3236
Author(s):  
Peng Yin ◽  
Wen Zhou ◽  
Xin Zhang ◽  
Bin Guo ◽  
Panxin Li

In order to improve the mechanical properties and water resistance of thermoplastic starch (TPS), a novel reinforcement of dialdehyde lignocellulose (DLC) was prepared via the oxidation of lignocellulose (LC) using sodium periodate. Then, the DLC-reinforced TPS composites were prepared by an extrusion and injection process using glycerol as a plasticizer. The DLC and LC were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the effects of DLC content on the properties of the DLC/TPS composites were investigated via the evaluation of SEM images, mechanical properties, thermal stability, and contact angles. XRD showed that the crystallinity of the DLC decreased due to oxidation damage to the LC. SEM showed good dispersion of the DLC in the continuous TPS phase at low amounts of DLC, which related to good mechanical properties. The tensile strength of the DLC/TPS composite reached a maximum at a DLC content of 3 wt.%, while the elongation at break of the DLC/TPS composites increased with increasing DLC content. The DLC/TPS composites had better thermal stability than the neat TPS. As the DLC content increased, the water resistance first increased, then decreased. The highest tensile strength and elongation at break reached 5.26 MPa and 111.25%, respectively, and the highest contact angle was about 90.7°.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 660
Author(s):  
Mekro Permana Pinem ◽  
Endarto Yudo Wardhono ◽  
Frederic Nadaud ◽  
Danièle Clausse ◽  
Khashayar Saleh ◽  
...  

Chitosan (CH)-based materials are compatible to form biocomposite film for food packaging applications. In order to enhance water resistance and mechanical properties, cellulose can be introduced to the chitosan-based film. In this work, we evaluate the morphology and water resistance of films prepared from chitosan and cellulose in their nanoscale form and study the phenomena underlying the film formation. Nanofluid properties are shown to be dependent on the particle form and drive the morphology of the prepared film. Film thickness and water resistance (in vapor or liquid phase) are clearly enhanced by the adjunction of nanocrystalline cellulose.


2011 ◽  
Vol 197-198 ◽  
pp. 1281-1284 ◽  
Author(s):  
Sui Lian Luo ◽  
Chao Dong Liu ◽  
Guo Fei Gong

In this paper three kind of water borne polyurethane are synthesized. FTIR identify the structure of 2-hydroxypropyl acrylate terminated water borne polyurethane with block PDMS. It is found that Si-WPUA has excellent water-resistance, good toughness, and good tensile strength. So, the work has been found the method which could improve water resistance and not decrease mechanical properties. It is hoped that the modified polyurethane could be used as coatings superior to the solvent-borne systems.


2011 ◽  
Vol 287-290 ◽  
pp. 302-305
Author(s):  
Xi Ping Gao ◽  
Ke Yong Tang ◽  
Yu Qing Zhang

The mechanical properties, swelling, solubility, and optical properties of composite films with poly(vinyl alcohol) (PVA) and gelatin were studied. With increasing the PVA content in the composite films, the tensile strength (TS) and elongation at break (EB) of the films increase. The swelling and solubility are different with different gelatin/PVA ratios, with the lowest at 1:5.


2020 ◽  
Vol 32 (2) ◽  
Author(s):  
Sristi Das Gupta ◽  
MD Shahnewaz Aftab ◽  
Hasan Mohammod Zakaria ◽  
Chaity Karmakar

Using natural (Jute) fiber in concrete as a reinforcing material can not only augment the concrete strength but also restrict the use of synthetic fiber which is environmentally detrimental. To achieve this goal, this study evaluated compressive strength, tensile strength and plastic shrinkage of concrete incorporating ‘Natural (Jute)’ fiber of different length (15 mm and 25 mm) with various mix proportions of 0.10%, 0.2%, 0.3% and 0.4% respectively by volume of concrete. Concrete is vulnerable to grow shrinkage cracks because of high evaporation rate in dry and windy conditions. Incorporating of fibers could abate development of this crack. The large length (25 mm) and higher content ( 0.3%) of reinforcing materials (jute fiber) result to the lowering of mechanical properties of JFRC compare to plain concrete. But in the incorporation of short (15 mm) and low fiber content ( 0.3%), enhances the mechanical properties of the same JFRC. Inclusion of 0.3% (15 mm length) fiber gave maximum enhancement of both concrete compressive and tensile strength by 12.4% and 58% respectively compared to the non-fiber reinforced concrete. A drastic suppression of crack occurrence and area of crack between non-fiber reinforced concrete and fiber reinforced concretes was attained. Experimental results of incorporating 0.1–0.4% fiber with 15 mm length in concrete revealed that plastic shrinkage cracks were decreased by 75–99% in contrast to non-fiber reinforced concrete. Therefore, it is concluded that the incorporation of jute fiber in making FRC composite would be one of the favorable methods to enhance the performance of concrete.


2018 ◽  
Vol 7 (1) ◽  
pp. 49-59
Author(s):  
Johan Budiman ◽  
Rodiana Nopianti ◽  
Shanti Dwita Lestari

This research studied the characteristics of bioplastic from large-leafed mangrove (Bruguiera gymnorrizha) starch. This research was arranged used Randomized Block Design (RBD) model, with different starch concentration (0.5%, 1%, 1.5% and 2%) as treatment. The parameters observed were mechanical properties (tensile strength and percent elongation), thickness, water uptake and biodegradation test. The result showed that the starch concentration was not significant, (P>0.05) affected tensile strength and water resistance. Different between treatments was observed as for elongation, thickness and biodegradation test significant (P<0.05). The results obtained from the bioplastic research of large-leafed mangrove starch for tensile strength ranged from 24.59 MPa – 32.91 MPa, percent elongation 2.93% – 4.88%, thickness 0.05 mm – 0,11 mm, water resistance 108.06% – 111.09% and biodegradation test with percent weight loss 17.91% – 54.40% with the highest degradation rate 18.13 – 3.62 mg /15 days burial. The best treatment was obtained by using 1,5% starch, 4 g chitosan and 15% glycerol or equal to starch : chitosan 1.5 g : 4 g and 0.9 mL glycerol.


2013 ◽  
Vol 789 ◽  
pp. 287-293 ◽  
Author(s):  
Heri Hermansyah ◽  
Rena Carissa ◽  
Fitri Anisa ◽  
Mondya Purna Septa ◽  
Tania Surya Utami ◽  
...  

Several biodegradable polymers have been explored to develop biodegradable edible films in order to reduce the use of conventional plastics. In this study, edible biocomposite film is made from gelatin filled with Bacterial Cellulose Microcrystal (BCMC). BCMC is produced from nata de coco paste, which is hydrolyzed with cellulase enzyme. In making biocomposite, gelatin matrix is first dissolved in distilled water and then mixed with BCMC filler solution in ultrasonic bath. The solution resulted is then casted and dried in room temperature. The addition of BCMC is proven to improve physical properties, mechanical, and thermal properties of the resulting material. BCMC distribution of SEM showed increasing the tensile strength test results, DSC, and WVTR. When the BCMC concentration was varied from 1-4 wt% of the gelatin mass, tensile strength and glass transition temperature (Tg) increased from 37.07 MPa to 74.04 MPa and 27.520°C to 39.60°C, respectively. Water Vapour Transmission Rate (WVTR) decreased from 37.77 gr.m-2.h-1 to 19.73 gr.m-2.h-1. Tensile test and DSC results also increased when varying the sonication time from 3-6 minutes, from 48.57 MPa to 57.23 MPa and 25.890°C to 37.290°C. WVTR decreased from 36.09 gr.m-2.h-1 to 20.54 gr.m-2.h-1.


2011 ◽  
Vol 3 (2) ◽  
pp. 249-259 ◽  
Author(s):  
M. J. Miah ◽  
M. A. Khan ◽  
R. A. Khan

Jute fiber reinforced low density polyethylene (LDPE) composites (10-30% fiber, by weight) are prepared by compression molding. Tensile strength (TS), bending strength (BS) and bending elongation (BE) of the composites are increased over LDPE.  Jute fiber is treated with monomer (2-hydroxyethyl methacrylate, HEMA) along with two different initiators in methanol solvent. Jute fibers are soaked with 10% HEMA+2% Irgacure-184 (F1-Formulation) and 3% HEMA+2% benzol peroxide (F2-Formulation) and dried at 80ºC for 2 hours then composites are fabricated by compression molding. It is found that due to chemical treatment of the jute fibers, a significant improvement of the mechanical properties of the composites are happened (56% TS, 30% BS and 35% BE) compared to the LDPE. 3%HEMA+2% benzol peroxide treated jute composites found better mechanical properties compared to 10%HEMA+2% Irgacure-184 treated jute composites. Dielectric constant and loss tangent of the composites are increased with increasing temperature up to a transition temperature and then decreased, finally reached to plateau. Scanning Electron Microscopic (SEM) analysis of the fracture side of the composites are carried out and supported better fiber-matrix adhesion due to the chemical treatment.Keywords: Jute fiber; Polyethylene; Composite; Tensile strength; Bending strength; Dielectric constant; Loss tangent.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i2.6763               J. Sci. Res. 3 (2), 249-259 (2011)


Sign in / Sign up

Export Citation Format

Share Document