Effect of process parameters on hardness and microstructure of graphene reinforced titanium composites

2017 ◽  
Vol 52 (4) ◽  
pp. 543-551 ◽  
Author(s):  
Mevlüt Gürbüz ◽  
Tugba Mutuk

In this study, the effect of the sintering time, temperature and graphene amount on titanium properties was examined for the first time in detail. From the results, the highly dense (4.39 g/cm3), most hard (from 390 HV to 566 HV) and improved microstructure for 0.15 wt% graphene addition were performed at 1100℃ for 120 min. The titanium composite properties have been reduced with increasing graphene due to damaged graphene and titanium carbide formation above 0.30 wt% graphene. To summarise, when pure titanium is compared with graphene reinforced titanium composites, the properties enhanced due to dislocation and fine grain strengthening mechanisms.

Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 218 ◽  
Author(s):  
Emanuele Cannella ◽  
Chris Valentin Nielsen ◽  
Niels Bay

Electro sinter forging (ESF) represents an innovative manufacturing process dealing with high electrical currents. Classified in the category of electrical current assisted sintering (ECAS) processes, the main principle is that Joule heating is generated inside the compacted powder, while the electrical current is flowing. The process is optimized through the analysis of the main process parameters, namely the electrical current density, sintering time, and compaction pressure, which are also evaluated as process fingerprints. The analysis was conducted on commercially pure titanium powder. Small discs and rings were manufactured for testing. The influence of the process parameters was analysed in terms of the final material properties. The relative density, microstructures, hardness, and tensile and compressive strengths were analysed concerning their validity as product fingerprints. Microstructural analyses revealed whether the samples were sintered or if melting had occurred. Mechanical properties were correlated to the process parameters depending on the material. The different sample shapes showed similar trends in terms of the density and microstructures as a function of the process parameters.


2012 ◽  
Vol 450-451 ◽  
pp. 600-604 ◽  
Author(s):  
Jian Chun Cao ◽  
Dong Wei Zhao ◽  
Wei Chen ◽  
Zhe Shi ◽  
Wei Dong Zhao

Using metallographic test, physicochemical phase analysis, X-ray diffraction and transmission electron microscope, the microstructure of seismic rebars with yield strength of 500MPa, which were fabricated by vanadium and nitrogen microalloying and controlled rolling and controlled cooling, were investigated. The results of metallographic test show that the microstructure in centre and interlayer of tested rebar samples are made up of ferrite, pearlite and a small amount of bainite, but tempered sorbite with thickness of 0.9mm on the edge of the rebars. Physicochemical phase analysis indicates that vanadium in the rebars had precipitated by VN mainly, and the precipitation rates of V and N are 60% and 70%, respectively. The result of strengthening mechanisms analysis shows that fine grain strengthening and transformation strengthening are the dominated contributions to strength and strengthening increments of them are 184.4 MPa and 111.6 MPa, respectively.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4007
Author(s):  
Qimeng Zhang ◽  
Bo Cui ◽  
Bin Sun ◽  
Xin Zhang ◽  
Zhizhong Dong ◽  
...  

The effects of rare earth element Sm on the microstructure, mechanical properties, and shape memory effect of the high temperature shape memory alloy, Cu-13.0Al-4.0Ni-xSm (x = 0, 0.2 and 0.5) (wt.%), are studied in this work. The results show that the Sm addition reduces the grain size of the Cu-13.0Al-4.0Ni alloy from millimeters to hundreds of microns. The microstructure of the Cu-13.0Al-4.0Ni-xSm alloys are composed of 18R and a face-centered cubic Sm-rich phase at room temperature. In addition, because the addition of the Sm element enhances the fine-grain strengthening effect, the mechanical properties and the shape memory effect of the Cu-13.0Al-4.0Ni alloy were greatly improved. When x = 0.5, the compressive fracture stress and the compressive fracture strain increased from 580 MPa, 10.5% to 1021 MPa, 14.8%, respectively. When the pre-strain is 10%, a reversible strain of 6.3% can be obtained for the Cu-13.0Al-4.0Ni-0.2Sm alloy.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1048
Author(s):  
Yingchao Guo ◽  
Yongfeng Liang ◽  
Junpin Lin ◽  
Fei Yang

Nano-Y2O3 reinforced Ti-47.7Al-7.1Nb-(V, Cr) alloy was fabricated by a powder metallurgy route using spark plasma sintering (SPS), and the influence of nano-Y2O3 contents on the microstructure and mechanical properties were investigated systematically. The results revealed that the ultimate tensile strength and elongation of the alloy were 570 ± 28 MPa and 1.7 ± 0.6% at 800 °C, 460 ± 23 MPa and 6.1 ± 0.4% at 900 °C with no nano-Y2O3, 662 ± 24 MPa and 5.5 ± 0.5% at 800 °C, and 466 ± 25 MPa and 16.5 ± 0.8% at 900 °C with 0.05 at% nano-Y2O3 addition, respectively. Due to the fine-grain strengthening and the second-phase strengthening, both tensile strength and elongation of the high-Nb TiAl alloy were enhanced with the addition of nano-Y2O3.


2014 ◽  
Vol 602-603 ◽  
pp. 438-442
Author(s):  
Lei Yu ◽  
Jian Yang ◽  
Tai Qiu

Fully dense (ZrB2+ZrC)/Zr3[Al (Si)]4C6 composites with ZrB2 content varying from 0 to 15 vol.% and fixed ZrC content of 10 vol.% were successfully prepared by in situ hot-pressing in Ar atmosphere using ZrH2, Al, Si, C and B4C as raw materials. With the increase of ZrB2 content, both the bending strength and fracture toughness of the composites increase and then decrease. The synergistic action of ZrB2 and ZrC as reinforcements shows significant strengthening and toughing effect to the Zr3[Al (Si)]4C6 matrix. The composite with 10 vol.% ZrB2 shows the optimal mechanical properties: 516 MPa for bending strength and 6.52 MPa·m1/2 for fracture toughness. With the increase of ZrB2 content, the Vickers hardness of the composites shows a near-linear increase from 15.3 GPa to 16.7 GPa. The strengthening and toughening effect can be ascribed to the unique mechanical properties of ZrB2 and ZrC reinforcements, the differences in coefficient of thermal expansion and modulus between them and Zr3[Al (Si)]4C6 matrix, fine grain strengthening and uniform microstructure derived by the in situ synthesis reaction.


2012 ◽  
Vol 19 (03) ◽  
pp. 1250017 ◽  
Author(s):  
PENG LIU ◽  
YUANBIN ZHANG ◽  
HUI LUO ◽  
YUSHUANG HUO

In this study, Al–Ti–Co was used to improve the surface performance of pure Ti . Laser cladding is an important surface modification technique, which can be used to improve the surface performance of pure Ti . Laser cladding of the Al–Ti–Co + TiB2 pre-placed powders on pure Ti can form ceramics reinforced the composite coating, which improved the wear resistance of the substrate. Characteristics of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and wear tests. And the laser-cladded coating can also have major dilution from the substrate. Due to the action of the fine grain strengthening and the phase constituent, the wear resistance and microhardness of pure Ti surface were greatly improved.


2021 ◽  
Vol 12 (5) ◽  
pp. 5745-5752

Pure titanium (Ti) sheets were subjected to shot peening to achieve grain refinement at the surface. Microstructural studies revealed significant grain refinement at the surface of the Ti sheet after shot peening. The affected thickness of the grain refined region was measured as 150 µm at the cross-section. Due to the fine grain structure, higher hardness was measured for the processed surface. X-ray diffraction studies of the processed sample showed peak broadening for processed Ti due to shot peening. Wettability studies conducted by contact angle measurements clearly showed increased hydrophilicity for the processed Ti as reflected in the lower contact angles. Increased surface energy was calculated for the shot-peened Ti, which can be attributed to the role of the increased fraction of grain boundaries due to microstructure modification. The results demonstrate the potential of the shot peening process to improve the surface wettability and further directly enhance the bioactivity of the Ti implant.


2020 ◽  
Vol 308 ◽  
pp. 33-50
Author(s):  
Anna Woźniak ◽  
Marcin Adamiak

Selective Laser Melting SLM is one of the most popular three dimensional printing methods, which can be used for manufactured real elements (with high geometrical complexity) in many application, such as medicine, automotive or aerospace industries. The SLM final parts are characterized by high mechanical properties and satisfactory physicochemical properties. However, the properties of parts depend of process parameters optimization. In this paper, effects of processing parameters, such as laser power P, scanning speed SP, layer thickness t or point distance PD on defect formation and relative densities of manufactured elements are explored. For the purpose the stainless steel 316L and pure titanium Grade II are used. The process optimization were carried out according to the formula of energy density, which is delivered to the powder material. The stainless steel samples were divided into 12 groups, depends of the energy density. The titanium parts were printed at the same value of energy, and the process parameters are changed. The microscope observation and relative density measurements were carried out. Based on the obtained results, it can be confuted that the SLM parameters have a significant effect on the samples properties and the mechanism formed defect in both material are similar.


Sign in / Sign up

Export Citation Format

Share Document