Influence of pyrolytic thermal history on olive pruning biochar and related epoxy composites mechanical properties

2019 ◽  
Vol 54 (14) ◽  
pp. 1863-1873 ◽  
Author(s):  
Mattia Bartoli ◽  
Muhammad Abid Nasir ◽  
Pravin Jagdale ◽  
Elisa Passaglia ◽  
Roberto Spiniello ◽  
...  

Olive pruning is waste from olive cultivation and is generally disposed of through incineration. Olive pruning can, however, be salvaged by pyrolysis, which also produces an interesting carbon-based material known as biochar. Biochar has been proved as a suitable filler which improves the mechanical properties of epoxy composites. Despite this, literature has few studied focused on the relationship between biochar thermal history and the properties it induces in related biochar containing composites. In this work, we report a morphological analysis of biochar produced at different pyrolytic high treatment temperatures (400℃, 600℃, 800℃, and 1000℃) using different heating rates (5℃/min, 15℃/min, and 50℃/min). We investigate the effect of different biochar morphology on the biochar epoxy-related composites, proving the tuneability of the mechanical properties of composites according to the thermal history of the biochar employed.

2007 ◽  
Vol 345-346 ◽  
pp. 1457-1460 ◽  
Author(s):  
Hiroshi Kawakami ◽  
Keiko Kimura ◽  
Satoshi Kondo ◽  
Jippei Suzuki

Al bonding in air by inserted A5056 was investigated in this study. Heating rate in thermal history of bonding process may have the relation with the growth of Al oxide film and the deformation of bonding surface by softening. Both of phenomena affect the joinability and the mechanical properties of bond. Al bonding in air was carried out by several heating rate. Growth of Al oxide film significantly suppressed the progress of bonding in air by low heating rate, 1K/s. Decrease of deformation of bonding surface suppressed also the progress of bonding by high heating rate, 10K/s. In case of medium heating rate, 5K/s, good joinabilty of Al bonding in air was obtained by the medium growth of oxide film and the deformation of bonding surface.


Author(s):  
C. J. J. Torrent ◽  
P. Krooß ◽  
T. Niendorf

AbstractIn additive manufacturing, the thermal history of a part determines its final microstructural and mechanical properties. The factors leading to a specific temperature profile are diverse. For the integrity of a parameter setting established, periphery variations must also be considered. In the present study, iron was processed by electron beam powder bed fusion. Parts realized by two process runs featuring different build plate sizes were analyzed. It is shown that the process temperature differs significantly, eventually affecting the properties of the processed parts.


2018 ◽  
Vol 10 (2) ◽  
pp. 116
Author(s):  
Henny Pratiwi

This research aims to investigate the effects of albasia wood filler as alternative reinforcement for extravagant and non-renewable filler being used in epoxy composites. The filler size used was 30 mesh and various filler volume fractions were 10, 20, 30 and 40 percent. Composites were manufactured using hand lay-up method. Properties such as tensile strength, elongation, modulus elasticity and strain energy absorption were determined based on ASTM standard. The results show that filler volume content significantly affects the tensile properties and impact strength of albasia wood-epoxy composites. The optimum tensile properties are achieved when 10 percent filler is added into epoxy matrix. The impact test also shows the same results. Further addition of filler decreases the mechanical properties of composites due to the existence of weak interfacial interaction between the albasia wood filler and polymer matrix for higher filler volume concentration beyond 10 vol. %. The scanning electron micrograph reveals that there are voids and pull-out mechanism on tensile fracture surface which are the cause of the composites failure.


2007 ◽  
pp. 85-95
Author(s):  
Marina Stamenovic ◽  
Slavisa Putic ◽  
Branislav Bajceta ◽  
Dragana Vitkovic

Mechanical properties of composite materials are conditioned by their structure and depend on the characteristics of structural components. In this paper is presented a numerical model by which the bending properties can be predicted on the basis of known mechanical properties of tension and pressure. Determining the relationship between these properties is justified having in mind the mechanics of fracture during bending, where the fracture takes place on the outer layer which is subjected to bending while the break ends on the layer subjected to pressure. The paper gives the values of tension, pressure and bending properties obtained by the corresponding mechanical test. A comparison of the numerical results of bending properties obtained on the basis of the model with the experimental ones, shows their satisfactory agreement. Therefore, this model can be used for some future research to predict bending properties without experiments.


1993 ◽  
Vol 08 (33) ◽  
pp. 3111-3128 ◽  
Author(s):  
M.A.R. OSORIO ◽  
M.A. VÁZQUEZ-MOZO

We investigate the cosmological consequences of having quantum fields living in a space with compactified dimensions. We will show that the equation of state is not modified by topological effects and so the dynamics of the universe remains as it is in the infinite volume limit. On the contrary the thermal history of the universe depends on terms that are associated with non-trivial topology. In the conclusions we discuss some issues about the relationship between the c=1 non-critical string-inspired cosmology and the result obtained with matter given by a hot massless field in S1×ℝ.


2016 ◽  
Vol 47 (2) ◽  
pp. 211-232 ◽  
Author(s):  
G Rajeshkumar ◽  
V Hariharan ◽  
TP Sathishkumar ◽  
V Fiore ◽  
T Scalici

Phoenix sp. fiber-reinforced epoxy composites have been manufactured using compression molding technique. The effect of reinforcement volume content (0%, 10%, 20%, 30%, 40%, and 50%) and size (300 µm particles, 10 mm, 20 mm, and 30 mm fibers) on quasi-static and dynamic mechanical properties was investigated. Moreover, the water absorption properties of composites were analyzed at different environmental conditions (10℃, 30℃, and 60℃). For each reinforcement size, composites loaded with 40% in volume show highest tensile and flexural properties. Furthermore, composites with 300 µm particles present the best impact properties and the lowest water absorption, regardless of the environmental condition. The dynamic mechanical properties of the composites loaded with 40% in volume were analyzed by varying the reinforcement size and the load frequency (i.e., 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, and 10 Hz). It was found that the glass transition temperature of short fiber-reinforced composites is higher than that of the composite loaded with particles.


2020 ◽  
Vol 14 (4) ◽  
pp. 7507-7519
Author(s):  
Francisco Ortega ◽  
William Fernandez ◽  
Juan Felipe Santa ◽  
Jimy Unfried-Silgado

Shoulder geometry is an important geometrical feature of tool design in friction stir welding since it has a strong effect on heat generation and material flow. In this paper the effect of shoulder geometry of tool on mechanical properties, microstructure evolution, and thermal history of friction stir welded joints of AA5083-O aluminium alloy. Two different shoulder geometries of tool named concave and featured (concentric circles) were used, both with cylindrical threaded pin. A set of samples were fabricated using a milling machine and a factorial experimental design to estimate the effects of process parameters (rotational and welding speed) and shoulder geometry on welded joints. Tensile strength, hardness, and microstructure evolution were experimentally measured. These observations were complemented with results obtained from a finite element modelling to calculate thermal history in welded joints. The results showed that the combination of revolution pitch R-value and shoulder geometry of tool were the most significant factors, affecting to mechanical properties, thermal behaviour, and microstructure evolution. The best tensile properties were obtained with a featured shoulder tool using 1400 rpm and 16 mm.min-1, and 1085 rpm and 11 mm.min-1 for rotational and welding speed. The same parameter combination resulted in a joint efficiency of 70% and 65%, respectively. In addition, the results of evaluation using an ANOVA analysis with fixed factors showed that increasing R-values produces statistically significant differences in ultimate strength (Sut) values.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 233 ◽  
Author(s):  
Abdulhakim Almajid ◽  
Rolf Walter ◽  
Tim Kroos ◽  
Harry Junaidi ◽  
Martin Gurka ◽  
...  

The concept of microfibrillar composites (MFCs) is adopted to produce composites of polyethylene terephthalate (PET) fiber-reinforced polypropylene (PP) materials. The two polymers were dry mixed with PET content ranging from 22 to 45 wt%. The PET has been used as a reinforcement to improve the mechanical properties of composites. The relationship between the morphology of the MFC structure and the mechanical behavior of the MFC filament was investigated. Analysis of the structure and mechanical behavior helped to understand the influence of the stretching ratio, extruder-melt temperature, stretching-chamber temperature, and filament speed.


2019 ◽  
Vol 46 (1) ◽  
pp. 80-88 ◽  
Author(s):  
Kynan H. G. Hughson ◽  
C. T. Russell ◽  
B. E. Schmidt ◽  
B. Travis ◽  
F. Preusker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document