Traditional Medicines, HIV, and Related Infections

2011 ◽  
Vol 23 (1) ◽  
pp. 159-164 ◽  
Author(s):  
M. Patel ◽  
P. Bessong ◽  
H. Liu

Traditional medicines are an integral part of health care worldwide, even though their efficacy has not been scientifically proven. HIV-infected individuals may use them singularly or in combination with conventional medicines. Many in vitro studies have proven the anti-HIV, anti- Candida, and anti–herpes simplex virus potential of traditional plants and identified some of the mechanisms of action. Very few in vivo studies are available that involve a small number of participants and show controversial results. In addition, knowledge is limited of the role of traditional medicines in the enhancement of the immune system. The use of traditional medicines with antiretroviral drugs (ARVs) has created a problem because drug interactions compromise the efficacy of ARVs. Several currently popular plants have been studied in the laboratory for their interaction with ARVs, with disadvantageous results. Unfortunately, no clinical trials are available. The science of traditional medicines is relatively new and is at present being modernized worldwide. However, there are still ethical issues regarding traditional medicines that need to be addressed—for example, regulations regarding quality control and standardization of medicines, regulation and education of healers who deliver these medicines, and unregulated clinical trials. The workshop addressed the following questions about traditional medicine and their use in HIV infection: What are the mechanisms of action of anti-HIV traditional medicines? Should traditional medicines be used in conjunction with ARV? Do traditional medicines enhance the immune system? Should medicinal plants be used for the control of oral infections associated with HIV? What are the ethical issues surrounding the use of traditional medicines for the treatment of HIV and associated infections?

2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


2017 ◽  
Vol 52 ◽  
pp. 44-50 ◽  
Author(s):  
Zhi-Jun Liu ◽  
Jing Bai ◽  
Feng-Li Liu ◽  
Xiang-Yang Zhang ◽  
Jing-Zhang Wang

2021 ◽  
Vol 42 ◽  
pp. e67649
Author(s):  
Marta Sánchez ◽  
Elena González-Burgos ◽  
Irene Iglesias ◽  
M. Pilar Gómez-Serranillos Cuadrado

Valeriana officinalis L. (Caprifoliaceae family) has been traditionally used to treat mild nervous tension and sleep problems. The basis of these activities are mainly attributed to valerenic acid through the modulation of the GABA receptor. Moreover, V. officinalis is claimed to have other biological activities such as cardiovascular benefits, anticancer, antimicrobial and spasmolytic.  The current review aims to update the biological and pharmacological studies (in vitro, in vivo and clinical trials) of V. officinalis and its major secondary metabolites in order to guide future research. Databases PubMed, Science Direct and Scopus were used for literature search including original papers written in English and published between 2014 and 2020. There have been identified 33 articles which met inclusion criteria. Most of these works were performed with V. officinalis extracts and only a few papers (in vitro and in vivo studies) evaluated the activity of isolated compounds (valerenic acid and volvalerenal acid K). In vitro studies focused on studying antioxidant and neuroprotective activity. In vivo studies and clinical trials mainly investigated activities on the nervous system (anticonvulsant activity, antidepressant, cognitive problems, anxiety and sleep disorders). Just few studies were focused on other different activities, highlight effects on symptoms of premenstrual and postmenopausal syndromes. Valeriana officinalis continues to be one of the medicinal plants most used by today's society for its therapeutic properties and whose biological and pharmacological activities continue to arouse great scientific interest as evidenced in recent publications. This review shows scientific evidence on traditional uses of V. officinalis on nervous system.


2020 ◽  
Author(s):  
Tristan Lerbs ◽  
Lu Cui ◽  
Megan E. King ◽  
Tim Chai ◽  
Claire Muscat ◽  
...  

AbstractScleroderma is a devastating fibrotic autoimmune disease. Current treatments are partly effective in preventing disease progression, but do not remove fibrotic tissue. Here, we evaluated whether scleroderma fibroblasts take advantage of the “don’t-eat-me-signal” CD47 and whether blocking CD47 enables the body’s immune system to get rid of diseased fibroblasts. To test this approach, we used a Jun-inducible scleroderma model. We first demonstrated in patient samples that scleroderma upregulated JUN and increased promotor accessibilities of both JUN and the CD47. Next, we established our scleroderma model demonstrating that Jun mediated skin fibrosis through the hedgehog-dependent expansion of CD26+Sca1-fibroblasts in mice. In a niche-independent adaptive transfer model, JUN steered graft survival and conferred increased self-renewal to fibroblasts. In vivo, JUN enhanced the expression of CD47, and inhibiting CD47 eliminated an ectopic fibroblast graft and increased in vitro phagocytosis. In the syngeneic mouse, depleting macrophages ameliorated skin fibrosis. Therapeutically, combined CD47 and IL6 blockade reversed skin fibrosis in mice and led to the rapid elimination of ectopically transplanted scleroderma cells. Altogether, our study is the first to demonstrate the efficiency of combining different immunotherapies in treating scleroderma and provide a rationale for combining CD47 and IL6 inhibition in clinical trials.


Author(s):  
Jabeena Khazir ◽  
Tariq Maqbool ◽  
Bilal Ahmad Mir

: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel coronavirus strain and the causative agent of COVID-19 was identified to have emerged in Wuhan, China, in December 2019 [1]. This pandemic situation and magnitude of suffering has led to global effort to find out effective measures for discovery of new specific drugs and vaccines to combat this deadly disease. In addition to many initiatives to develop vaccines for protective immunity against SARS-CoV-2, some of which are at various stages of clinical trials researchers worldwide are currently using available conventional therapeutic drugs with potential to combat the disease effectively in other viral infections and it is believed that these antiviral drugs could act as a promising immediate alternative. Remdesivir (RDV), a broad-spectrum anti-viral agent, initially developed for the treatment of Ebola virus (EBOV) and known to show promising efficiency in in vitro and in vivo studies against SARS and MERS coronaviruses, is now being investigated against SARS-CoV-2. On May 1, 2020, The U.S. Food and Drug Administration (FDA) granted Emergency Use Authorization (EUA) for RDV to treat COVID-19 patients [2]. A number of multicentre clinical trials are on-going to check the safety and efficacy of RDV for the treatment of COVID-19. Results of published double blind, and placebo-controlled trial on RDV against SARS-CoV-2, showed that RDV administration led to faster clinical improvement in severe COVID-19 patients compared to placebo. This review highlights the available knowledge about RDV as a therapeutic drug for coronaviruses and its preclinical and clinical trials against COVID-19.


2020 ◽  
Vol 21 (24) ◽  
pp. 9403
Author(s):  
Ignacio Relaño-Rodríguez ◽  
Maria Ángeles Muñoz-Fernández

Development of new, safe, and effective microbicides to prevent human immunodeficiency virus HIV sexual transmission is needed. Unfortunately, most microbicides proved ineffective to prevent the risk of HIV-infection in clinical trials. We are working with G2-S16 polyanionic carbosilane dendrimer (PCD) as a new possible vaginal topical microbicide, based on its short reaction times, wide availability, high reproducibility, and quantitative yields of reaction. G2-S16 PCD exerts anti-HIV activity at an early stage of viral replication, by blocking gp120/CD4/CCR5 interaction, and providing a barrier against infection for long periods of time. G2-S16 PCD was stable at different pH values, as well as in the presence of seminal fluids. It maintained the anti-HIV activity against R5/X4 HIV over time, did not generate any type of drug resistance, and retained the anti-HIV effect when exposed to semen-enhanced viral infection. Importantly, G2-S16 PCD did not modify vaginal microbiota neither in vitro or in vivo. Histopathological examination did not show vaginal irritation, inflammation, lesions, or damage in the vaginal mucosa, after administration of G2-S16 PCD at different concentrations and times in female mice and rabbit animal models. Based on these promising data, G2-S16 PCD could become a good, safe, and readily available candidate to use as a topical vaginal microbicide against HIV.


2019 ◽  
Vol 28 (12) ◽  
pp. 1490-1506 ◽  
Author(s):  
Yu You ◽  
Di-guang Wen ◽  
Jian-ping Gong ◽  
Zuo-jin Liu

Liver transplantation has been deemed the best choice for end-stage liver disease patients but immune rejection after surgery is still a serious problem. Patients have to take immunosuppressive drugs for a long time after liver transplantation, and this often leads to many side effects. Mesenchymal stem cells (MSCs) gradually became of interest to researchers because of their powerful immunomodulatory effects. In the past, a large number of in vitro and in vivo studies have demonstrated the great potential of MSCs for participation in posttransplant immunomodulation. In addition, MSCs also have properties that may potentially benefit patients undergoing liver transplantation. This article aims to provide an overview of the current understanding of the immunomodulation achieved by the application of MSCs in liver transplantation, to discuss the problems that may be encountered when using MSCs in clinical practice, and to describe some of the underlying capabilities of MSCs in liver transplantation. Cell–cell contact, soluble molecules, and exosomes have been suggested to be critical approaches to MSCs’ immunoregulation in vitro; however, the exact mechanism, especially in vivo, is still unclear. In recent years, the clinical safety of MSCs has been proven by a series of clinical trials. The obstacles to the clinical application of MSCs are decreasing, but large sample clinical trials involving MSCs are still needed to further study their clinical effects.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Min Sun Shin ◽  
Hong-Jai Park ◽  
Takahiro Maeda ◽  
Hiroshi Nishioka ◽  
Hajime Fujii ◽  
...  

Mushrooms have been used for various health conditions for many years by traditional medicines practiced in different regions of the world although the exact effects of mushroom extracts on the immune system are not fully understood. AHCC® is a standardized extract of cultured shiitake or Lentinula edodes mycelia (ECLM) which contains a mixture of nutrients including oligosaccharides, amino acids, and minerals obtained through liquid culture. AHCC® is reported to modulate the numbers and functions of immune cells including natural killer (NK) and T cells which play important roles in host defense, suggesting the possible implication of its supplementation in defending the host against infections and malignancies via modulating the immune system. Here, we review in vivo and in vitro effects of AHCC® on NK and T cells of humans and animals in health and disease, providing a platform for the better understanding of immune-mediated mechanisms and clinical implications of AHCC®.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5389
Author(s):  
Stella Gagliardi ◽  
Carlo Morasso ◽  
Polychronis Stivaktakis ◽  
Cecilia Pandini ◽  
Veronica Tinelli ◽  
...  

Curcumin’s pharmacological properties and its possible benefits for neurological diseases and dementia have been much debated. In vitro experiments show that curcumin modulates several key physiological pathways of importance for neurology. However, in vivo studies have not always matched expectations. Thus, improved formulations of curcumin are emerging as powerful tools in overcoming the bioavailability and stability limitations of curcumin. New studies in animal models and recent double-blinded, placebo-controlled clinical trials using some of these new formulations are finally beginning to show that curcumin could be used for the treatment of cognitive decline. Ultimately, this work could ease the burden caused by a group of diseases that are becoming a global emergency because of the unprecedented growth in the number of people aged 65 and over worldwide. In this review, we discuss curcumin’s main mechanisms of action and also data from in vivo experiments on the effects of curcumin on cognitive decline.


Sign in / Sign up

Export Citation Format

Share Document