LepR-Expressing Stem Cells Are Essential for Alveolar Bone Regeneration

2020 ◽  
Vol 99 (11) ◽  
pp. 1279-1286 ◽  
Author(s):  
D. Zhang ◽  
S. Zhang ◽  
J. Wang ◽  
Q. Li ◽  
H. Xue ◽  
...  

Stem cells play a critical role in bone regeneration. Multiple populations of skeletal stem cells have been identified in long bone, while their identity and functions in alveolar bone remain unclear. Here, we identified a quiescent leptin receptor–expressing (LepR+) cell population that contributed to intramembranous bone formation. Interestingly, these LepR+ cells became activated in response to tooth extraction and generated the majority of the newly formed bone in extraction sockets. In addition, genetic ablation of LepR+ cells attenuated extraction socket healing. The parabiosis experiments revealed that the LepR+ cells in the healing sockets were derived from resident tissue rather than peripheral blood circulation. Further studies on the mechanism suggested that these LepR+ cells were responsive to parathyroid hormone/parathyroid hormone 1 receptor (PTH/PTH1R) signaling. Collectively, we demonstrate that LepR+ cells, a postnatal skeletal stem cell population, are essential for alveolar bone regeneration of extraction sockets.

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1129
Author(s):  
Bo Li ◽  
Yigan Wang ◽  
Yi Fan ◽  
Takehito Ouchi ◽  
Zhihe Zhao ◽  
...  

The cranial bones constitute the protective structures of the skull, which surround and protect the brain. Due to the limited repair capacity, the reconstruction and regeneration of skull defects are considered as an unmet clinical need and challenge. Previously, it has been proposed that the periosteum and dura mater provide reparative progenitors for cranial bones homeostasis and injury repair. In addition, it has also been speculated that the cranial mesenchymal stem cells reside in the perivascular niche of the diploe, namely, the soft spongy cancellous bone between the interior and exterior layers of cortical bone of the skull, which resembles the skeletal stem cells’ distribution pattern of the long bone within the bone marrow. Not until recent years have several studies unraveled and validated that the major mesenchymal stem cell population of the cranial region is primarily located within the suture mesenchyme of the skull, and hence, they are termed suture mesenchymal stem cells (SuSCs). Here, we summarized the characteristics of SuSCs, this newly discovered stem cell population of cranial bones, including the temporospatial distribution pattern, self-renewal, and multipotent properties, contribution to injury repair, as well as the signaling pathways and molecular mechanisms associated with the regulation of SuSCs.


Author(s):  
Silmi Mariya

The mammary gland contains adult stem cells that are capable of self-renewal.  This population plays an important role in the development of mammary gland and breast cancer pathogenesis. The studies of mammary stem cells are limited due to the difficulty to acquire and expand adult stem cell population in an undifferentiated state. In this study, we developed mammosphere cultures of nulliparous cynomolgus monkeys (Macaca fascicularis; Mf) as a culture system to enrich mammary stem cells. This species has similarity of mammary gland structure as humans including anatomy, developmental stages, and lobule profile of mammary gland. The use of stem cells from primate animals is essential to bridge the knowledge gaps resulting from stem cell research using rodents for clinical trials in human. Small samples of mammary tissues were collected by surgical biopsy; cells were cultured as monolayer and cryopreserved. Cryopreserved cells were cultured into mammospheres, and the expression of markers for mammary stem cells was evaluated using qPCR. Cells were further differentiated with 3D approaches to evaluate morphology and organoid budding. The study showed that mammosphere culture resulted in an increase in the expression of mammary stem cell markers with each passage. The 3D differentiation in matrigel allowed for organoid formation. Mammary gland stem cells have been successfully differentiated which characterized by CSN2 marker expression and differentiation regulators marker STAT5 and GATA3. The results indicate that mammospheres can be successfully developed derived from breast tissue of nulliparous Mf collected via surgical biopsy. As the mammosphere allows for enrichment of mammary stem cell population, the findings also suggest that a 3-dimensional system is efficient as in-vitro model to study mammary stem cells and a useful system to study mammary differentiation in regards to cancer prevention.


2021 ◽  
Author(s):  
Lindy Jensen ◽  
Zsolt G. Venkei ◽  
George J. Watase ◽  
Bitarka Bisai ◽  
Scott Pletcher ◽  
...  

Tissue-specific stem cells maintain tissue homeostasis by providing a continuous supply of differentiated cells throughout the life of organisms. Differentiated/differentiating cells can revert back to a stem cell identity via dedifferentiation to help maintain the stem cell pool beyond the lifetime of individual stem cells. Although dedifferentiation is important to maintain the stem cell population, it is speculated to underlie tumorigenesis. Therefore, this process must be tightly controlled. Here we show that a translational regulator me31B plays a critical role in preventing excess dedifferentiation in the Drosophila male germline: in the absence of me31B, spermatogonia (SGs) dedifferentiate into germline stem cells (GSCs) at a dramatically elevated frequency. Our results show that the excess dedifferentiation is likely due to misregulation of nos, a key regulator of germ cell identity and GSC maintenance. Taken together, our data reveal negative regulation of dedifferentiation to balance stem cell maintenance with differentiation.


Author(s):  
Desi Sandra Sari ◽  
Fourier Dzar Eljabbar Latief ◽  
Ferdiansyah ◽  
Ketut Sudiana ◽  
Fedik Abdul Rantam

The tissue engineering approach for periodontal tissue regeneration using a combination of stem cells and scaffold has been vastly developed. Mesenchymal Stem Cells (MSCs) seeded with Bovine Teeth Scaffold (BTSc) can repair alveolar bone damage in periodontitis cases. The alveolar bone regeneration process was analyzed by micro-computed tomography (µ-CT) to observe the structure of bone growth and to visualize the scaffold in 3-Dimensional (3D). The purpose of this study is to analyze alveolar bone regeneration by µ-CT following the combination of MSCs and bovine teeth scaffold (MSCs-BTSc) implantation in the Wistar rat periodontitis model. Methods. MSCs were cultured from adipose-derived mesenchymal stem cells of rats. BTSc was taken from bovine teeth and freeze-dried with a particle size of 150-355 µm. MSCs were seeded on BTSc for 24 hours and transplanted in a rat model of periodontitis. Thirty-five Wistar rats were made as periodontitis models with LPS induction from P. gingivalis injected to the buccal section of interproximal gingiva between the first and the second mandibular right-molar teeth for six weeks. There were seven groups (control group, BTSc group on day 7, BTSc group on day 14, BTSc group on day 28, MSCs-BTSc group on day 7, MSCs-BTSc group on day 14, MSCs-BTSc group on day 28). The mandibular alveolar bone was analyzed and visualized in 3D with µ-CT to observe any new bone growth. Statistical Analysis. Group data were subjected to the Kruskal Wallis test followed by the Mann-Whitney (p <0.05). The µ-CT qualitative analysis shows a fibrous structure, which indicates the existence of new bone regeneration. Quantitative analysis of the periodontitis model showed a significant difference between the control model and the model with the alveolar bone resorption (p <0.05). The bone volume and density measurements revealed that the MSCs-BTSc group on day 28 formed new bone compared to other groups (p <0.05). Administration of MSCs-BTSc combination has the potential to form new alveolar bone.


2020 ◽  
Vol 7 (3) ◽  
pp. 191848
Author(s):  
Yanli Wang ◽  
Wing-Cheong Lo ◽  
Ching-Shan Chou

Stem cells are important to generate all specialized tissues at an early life stage, and in some systems, they also have repair functions to replenish the adult tissues. Repeated cell divisions lead to the accumulation of molecular damage in stem cells, which are commonly recognized as drivers of ageing. In this paper, a novel model is proposed to integrate stem cell proliferation and differentiation with damage accumulation in the stem cell ageing process. A system of two structured PDEs is used to model the population densities of stem cells (including all multiple progenitors) and terminally differentiated (TD) cells. In this system, cell cycle progression and damage accumulation are modelled by continuous dynamics, and damage segregation between daughter cells is considered at each division. Analysis and numerical simulations are conducted to study the steady-state populations and stem cell damage distributions under different damage segregation strategies. Our simulations suggest that equal distribution of the damaging substance between stem cells in a symmetric renewal and less damage retention in stem cells in the asymmetric division are favourable strategies, which reduce the death rate of the stem cells and increase the TD cell populations. Moreover, asymmetric damage segregation in stem cells leads to less concentrated damage distribution in the stem cell population, which may be more robust to the stochastic changes in the damage. The feedback regulation from stem cells can reduce oscillations and population overshoot in the process, and improve the fitness of stem cells by increasing the percentage of cells with less damage in the stem cell population.


2020 ◽  
pp. 002203452096012
Author(s):  
X. Yuan ◽  
J. Chen ◽  
J.A. Grauer ◽  
Q. Xu ◽  
L.A. Van Brunt ◽  
...  

The most fundamental function of an epithelial tissue is to act as a barrier, regulating interactions between the external environment and the body. This barrier function typically requires a contiguous cell layer but since teeth penetrate the oral epithelium, a modified barrier has evolved, called the junctional epithelium (JE). In health, the JE attaches to the tooth, sealing the inside of the body against oral micro-organisms. Breakdown of the JE barrier results in periodontal ligament (PDL) disintegration, alveolar bone resorption, and ultimately tooth loss. Using lineage tracing and DNA pulse-chase analyses, we identified an anatomical location in the JE that supported both fast- and slow-cycling Wnt-responsive stem cells that contributed to self-renewal of the tissue. Stem cells produced daughter cells with an extraordinarily high rate of turnover that maintained JE integrity for 1.4 y in mice. Blocking cell proliferation via a chemotherapeutic agent 5-fluorouracil (5-Fu) eliminated fast-cycling stem cells, which caused JE degeneration, PDL destruction, and bone resorption. Upon removal of 5-Fu, slow-cycling stem cells regenerated both the structure and barrier function of the JE. Taken together, our studies identified a stem cell population in the JE and have potential clinical implications for prevention and treatment of periodontitis.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1274-1274
Author(s):  
Elizabeth Csaszar ◽  
Daniel Kirouac ◽  
Mei Yu ◽  
Caryn Ito ◽  
Peter W. Zandstra

Abstract Abstract 1274 Clinical outcomes of hematopoietic stem cell (HSC) transplantation are correlated with infused progenitor cell dose. Limited cell numbers in a typical umbilical cord blood (UCB) unit restricts the therapeutic potential of UCB and motivates ex vivo expansion of these cells. Strategies to grow HSCs have relied on the supplement of molecules acting directly on the stem cell population; however, in all cases, sustained HSC growth is limited by the concurrent growth of more mature cells and their endogenously produced inhibitory signaling factors. Despite increasing evidence for the important role of intercellular (between cell) communication networks, the identity and impact of non-stem cell autonomous feedback signaling remains poorly understood. Simultaneous kinetic tracking of more than 30 secreted factors produced during UCB culture, including TGF-b1, MIP-1b, and MCP-1, in combination with computational simulations of cell population dynamics, enabled us to develop a global control strategy predicted to reduce inhibitory paracrine signaling and, consequently, increase HSC self-renewal. By maintaining endogenously produced ligands at specified levels using a tuneable fed-batch (automated media dilution) strategy, we achieved significant improvements in expansions of total cell numbers (∼180-fold), CD34+ cells (∼80-fold), and NOD/SCID/IL-2Rgc-null (NSG) repopulating cells (∼11-fold, detected at limiting dilution). The fed-batch strategy has been integrated into an automated bioreactor, allowing for the generation of a clinically-relevant cell product after 12 days of culture, with minimal user manipulation. As this strategy targets the HSC environment and not the stem cells directly, it has the ability to act in combination with other expansion strategies to produce synergistic results. Unexpectedly, supplementation of the soluble protein, TAT-HOXB4, to the system, yielded the expected boost in progenitor expansion only in “sub-optimal” control conditions but not in the fed-batch system. Hypothesizing that the efficacy of HOXB4 may be dependent on the skewing of supportive vs. non-supportive cell populations, and the consequent impact of paracrine ligand production, we performed kinetic tracking of 20 hematopoietic cell types during several supportive (fed-batch, HOXB4 supplemented, Notch ligand Delta1 supplemented) vs. non-supportive (control) cultures. Meta analysis of these data revealed a non-autonomous link between HOXB4, increased megakaryocyte production, and stem cell proliferation, as well as between Notch delta-1 ligand, decreased myeloid cell production, and a decrease in the growth inhibition of stem cells. These predictions have been experimentally validated using co-cultures of sorted purified HSCs and CD41+ megakaryocykes and CD14+ monocytes. Our results identify complex connections between mature cell lineages and stem cell fate decisions and we expect to report a direct link between cell-cell interactions emerging from culture manipulations and the resulting impact on HSC self-renewal. Collectively, these studies support a dominant role for non-stem cell autonomous feedback signaling in the regulation of HSC self-renewal. Overcoming cell non-autonomous inhibition of HSC self-renewal has allowed for novel strategies to enhance HSC numbers ex vivo, thereby facilitating the production of clinically relevant quantities of stem and progenitor cells and enabling more effective strategies to treat hematologic disease. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 127 ◽  
pp. S304-S305
Author(s):  
E. Bahn ◽  
M. Van Heerden ◽  
J. Gueulette ◽  
K. Slabbert ◽  
W. Shaw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document