Animal models for cystic fibrosis: A systematic search and mapping review of the literature – Part 1: genetic models

2019 ◽  
Vol 54 (4) ◽  
pp. 330-340 ◽  
Author(s):  
Cathalijn HC Leenaars ◽  
Rob BM De Vries ◽  
Anna Heming ◽  
Damian Visser ◽  
David Holthaus ◽  
...  

Animal models for cystic fibrosis (CF) have enhanced our understanding of the pathology and contributed to the development of new treatments. In the field of CF, many animal models have been developed and described. To our knowledge, thus far, none of the reviews of CF animal models has used a systematic methodology. A systematic approach to creating model overviews can lead to an objective, evidence-based choice of an animal model for new research questions. We searched Pubmed and Embase for the currently available animal models for CF. Two independent reviewers screened the results. We included all primary studies describing an animal model for CF. After duplicate removal, 12,304 publications were left. Because of the large number of models, in the current paper, only the genetic models are presented. A total of 636 publications were identified describing genetic animal models for CF in mice, pigs, ferrets, rats and zebrafish. Most of these models have an altered Cftr gene. An overview of basic model characteristics and outcome measures for these genetic models is provided, together with advice on using these data. As far as the authors are aware, this is one of the largest systematic mapping reviews on genetic animal models for CF. It can aid in selecting a suitable model and outcome measures. In general, the reporting quality of the included publications was poor. Further systematic reviews are warranted to determine the quality and translational value of these models further.

2021 ◽  
pp. 002367722199068
Author(s):  
Cathalijn HC Leenaars ◽  
Rob BM de Vries ◽  
Joey Reijmer ◽  
David Holthaus ◽  
Damian Visser ◽  
...  

Various animal models are available to study cystic fibrosis (CF). These models may help to enhance our understanding of the pathology and contribute to the development of new treatments. We systematically searched all publications on CF animal models. Because of the large number of models retrieved, we split this mapping review into two parts. Previously, we presented the genetic CF animal models. In this paper we present the nongenetic CF animal models. While genetic animal models may, in theory, be preferable for genetic diseases, the phenotype of a genetic model does not automatically resemble human disease. Depending on the research question, other animal models may thus be more informative. We searched Pubmed and Embase and identified 12,303 unique publications (after duplicate removal). All references were screened for inclusion by two independent reviewers. The genetic animal models for CF (from 636 publications) were previously described. The non-genetic CF models (from 189 publications) are described in this paper, grouped by model type: infection-based, pharmacological, administration of human materials, xenografts and other. As before for the genetic models, an overview of basic model characteristics and outcome measures is provided. This CF animal model overview can be the basis for an objective, evidence-based model choice for specific research questions. Besides, it can help to retrieve relevant background literature on outcome measures of interest.


2018 ◽  
Vol 29 (7) ◽  
pp. 757-770 ◽  
Author(s):  
Nikita Nirwan ◽  
Preeti Vyas ◽  
Divya Vohora

Abstract Temporal lobe epilepsy (TLE) is the chronic and pharmacoresistant form of epilepsy observed in humans. The current literature is insufficient in explicating the comprehensive mechanisms underlying its pathogenesis and advancement. Consequently, the development of a suitable animal model mimicking the clinical characteristics is required. Further, the relevance of status epilepticus (SE) to animal models is dubious. SE occurs rarely in people; most epilepsy patients never experience it. The present review summarizes the established animal models of SE and TLE, along with a brief discussion of the animal models that have the distinctiveness and carries the possibility to be developed as effective models for TLE. The review not only covers the basic requirements, mechanisms, and methods of induction of each model but also focuses upon their major limitations and possible modifications for their future use. A detailed discussion on chemical, electrical, and hypoxic/ischemic models as well as a brief explanation on the genetic models, most of which are characterized by development of SE followed by neurodegeneration, is presented.


2019 ◽  
Vol 20 (21) ◽  
pp. 5402 ◽  
Author(s):  
Kyohei Kin ◽  
Takao Yasuhara ◽  
Masahiro Kameda ◽  
Isao Date

Parkinson’s disease (PD) is a chronic and progressive movement disorder and the second most common neurodegenerative disease. Although many studies have been conducted, there is an unmet clinical need to develop new treatments because, currently, only symptomatic therapies are available. To achieve this goal, clarification of the pathology is required. Attempts have been made to emulate human PD and various animal models have been developed over the decades. Neurotoxin models have been commonly used for PD research. Recently, advances in transgenic technology have enabled the development of genetic models that help to identify new approaches in PD research. However, PD animal model trends have not been investigated. Revealing the trends for PD research will be valuable for increasing our understanding of the positive and negative aspects of each model. In this article, we clarified the trends for animal models that were used to research PD in the 2000s, and we discussed each model based on these trends.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 598
Author(s):  
Clarisse R. Mazzola ◽  
Domenico Ribatti

Introduction: Animal models are interesting tools to improve our knowledge of the pathophysiological processes underlying kidney cancer development. Recent advances have been made in the understanding of the genetic founding events underlying clear cell renal carcinoma. The aim of this paper was to review and discuss the characteristics of all the induced animal models of renal carcinogenesis that have been described in the scientific literature to date and to see if and how they could regain some use in the light of the latest discoveries. Methods: The authors reviewed all the papers available in PubMed regarding induced animal models of renal carcinogenesis. From this perspective, the keywords “induced”, “animal model”, and “renal cancer” were used in PubMed’s search engine. Another search was done using the keywords “induced”, “animal model”, and “kidney cancer”. PRISMA recommendations were used to develop the literature review. Results: Seventy-eight studies were included in this review. Results were presented depending on the mechanisms used to induce carcinogenesis in each model: induction by carcinogens, hormones, viral induction, or induction by other agents. Discussion focused on the possibility to rethink these different induced animal models and use them to answer new research questions. Conclusion: Many induced animal models have been developed in the past to study renal cancer. While these models seemed unable to yield new knowledge, the latest advances in the understanding of the genetics behind renal carcinogenesis could well bring the models back to the forefront.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
J. A. Potashkin ◽  
S. R. Blume ◽  
N. K. Runkle

Most cases of Parkinson's disease (PD) are sporadic. When choosing an animal model for idiopathic PD, one must consider the extent of similarity or divergence between the physiology, anatomy, behavior, and regulation of gene expression between humans and the animal. Rodents and nonhuman primates are used most frequently in PD research because when a Parkinsonian state is induced, they mimic many aspects of idiopathic PD. These models have been useful in our understanding of the etiology of the disease and provide a means for testing new treatments. However, the current animal models often fall short in replicating the true pathophysiology occurring in idiopathic PD, and thus results from animal models often do not translate to the clinic. In this paper we will explain the limitations of animal models of PD and why their use is inappropriate for the study of some aspects of PD.


2015 ◽  
Vol 223 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Georg Juckel

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.


2020 ◽  
Vol 19 ◽  
pp. S49
Author(s):  
L. Backström Eriksson ◽  
C. Laine ◽  
I. de Monestrol ◽  
A. Lindblad ◽  
E. Bergenmar-Ivarsson ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4221
Author(s):  
Aage Kristian Olsen Alstrup ◽  
Svend Borup Jensen ◽  
Ole Lerberg Nielsen ◽  
Lars Jødal ◽  
Pia Afzelius

The development of new and better radioactive tracers capable of detecting and characterizing osteomyelitis is an ongoing process, mainly because available tracers lack selectivity towards osteomyelitis. An integrated part of developing new tracers is the performance of in vivo tests using appropriate animal models. The available animal models for osteomyelitis are also far from ideal. Therefore, developing improved animal osteomyelitis models is as important as developing new radioactive tracers. We recently published a review on radioactive tracers. In this review, we only present and discuss osteomyelitis models. Three ethical aspects (3R) are essential when exposing experimental animals to infections. Thus, we should perform experiments in vitro rather than in vivo (Replacement), use as few animals as possible (Reduction), and impose as little pain on the animal as possible (Refinement). The gain for humans should by far exceed the disadvantages for the individual experimental animal. To this end, the translational value of animal experiments is crucial. We therefore need a robust and well-characterized animal model to evaluate new osteomyelitis tracers to be sure that unpredicted variation in the animal model does not lead to a misinterpretation of the tracer behavior. In this review, we focus on how the development of radioactive tracers relies heavily on the selection of a reliable animal model, and we base the discussions on our own experience with a porcine model.


2013 ◽  
Vol 26 (5) ◽  
pp. 264-271 ◽  
Author(s):  
Mousumi Tania ◽  
Md. Asaduzzaman Khan ◽  
Kun Xia

ObjectiveAutism, a lifelong neuro-developmental disorder is a uniquely human condition. Animal models are not the perfect tools for the full understanding of human development and behavior, but they can be an important place to start. This review focused on the recent updates of animal model research in autism.MethodsWe have reviewed the publications over the last three decades, which are related to animal model study in autism.ResultsAnimal models are important because they allow researchers to study the underlying neurobiology in a way that is not possible in humans. Improving the availability of better animal models will help the field to increase the development of medicines that can relieve disabling symptoms. Results from the therapeutic approaches are encouraging remarkably, since some behavioral alterations could be reversed even when treatment was performed on adult mice. Finding an animal model system with similar behavioral tendencies as humans is thus vital for understanding the brain mechanisms, supporting social motivation and attention, and the manner in which these mechanisms break down in autism. The ongoing studies should therefore increase the understanding of the biological alterations associated with autism as well as the development of knowledge-based treatments therapy for those struggling with autism.ConclusionIn this review, we have presented recent advances in research based on animal models of autism, raising hope for understanding the disease biology for potential therapeutic intervention to improve the quality of life of autism individuals.


Sign in / Sign up

Export Citation Format

Share Document