The use of in vitro methods for plant genetic conservation

1982 ◽  
Vol 11 (2) ◽  
pp. 67-72 ◽  
Author(s):  
C. P. Wilkins ◽  
T. Bengochea ◽  
J. H. Dodds

The preservation of genetically stable tissue for future propagation is of fundamental importance to plant breeders. In many cases this can be done by storing seed under carefully controlled conditions but there are many plants for which this is not possible or may not be economically feasible. This article reviews current techniques of long-term conservation of plant genetic material by tissue culture methods.

1948 ◽  
Vol s3-89 (7) ◽  
pp. 239-252
Author(s):  
P. B. MEDAWAR

The transplantation of skin from one rabbit to another elicits a reaction that conforms in main outline with that of an actively acquired immunity. The experiments described in this paper were designed to test the hypothesis that the regression of such grafts is secured by the action of antibodies demonstrable in vitro. Skin from adult rabbits has therefore been cultivated in the presence of serum and growing mesenchymal tissues derived solely from rabbits heavily and specifically immunized against it. Immune sera and tissues are without effect on the survival, cell-division frequency and migratory activities of explanted skin, and agglutinins for epidermal cell suspensions are not demonstrable in immune sera. With certain stated qualifications, it has therefore been concluded that the occurrence of free antibodies is not a sufficient explanation of the regression of skin homografts in vivo.


1997 ◽  
Vol 152 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Y H A Abdel-Wahab ◽  
F P M O'Harte ◽  
C R Barnett ◽  
P R Flatt

Abstract Characteristics of cellular insulin glycation were examined in the pancreatic B-cell line, BRIN-BD11. The extent of insulin glycation increased stepwise during 72 h of culture at 5·6–33·3 mmol/l glucose, attaining levels up to 27%. Glycation of insulin at 33·3 mmol/l glucose was rapid, reaching maximal values within 2 h, and not readily reversible during 2 to 24 h of subsequent exposure to 5·6 mmol/l glucose. Glycated insulin was readily secreted by BRIN-BD11 cells upon active stimulation with glucose and other secretagogues. Cellular insulin glycation was decreased by 66–80% by inhibitors of protein glycation, vitamin C, aminoguanidine or acetylsalicylic acid. Modulation of insulin-secretory activity of BRIN-BD11 cells by co-culture at high glucose with diazoxide, l-alanine or glibenclamide indicated that long-term stimulation of secretion was associated with a decrease in the extent of insulin glycation. Glycation of insulin in vitro was substantially less extensive than in BRIN-BD11 cells, although glucose-6-phosphate and glyceraldehyde-3-phosphate were 1·4- to 2·0-fold more reactive than glucose per se. These observations indicate that insulin is readily glycated and secreted from insulin-secreting cells under hyperglycaemic conditions in culture. Journal of Endocrinology (1997) 152, 59–67


Parasitology ◽  
2006 ◽  
Vol 133 (4) ◽  
pp. 421-432 ◽  
Author(s):  
P. M. BARTLEY ◽  
S. WRIGHT ◽  
J. SALES ◽  
F. CHIANINI ◽  
D. BUXTON ◽  
...  

To determine whether prolonged in vitro passage would result in attenuation of virulence in vivo, Neospora caninum tachyzoites were passaged for different lengths of time in vitro and compared for their ability to cause disease in mice. Groups of Balb/c mice were inoculated intraperitoneally with 5×106 or 1×107 of low-passage or high-passage N. caninum tachyzoites. The mice were monitored for changes in their demeanour and body weight, and were culled when severe clinical symptoms of murine neosporosis were observed. Mice inoculated with the high-passage parasites survived longer (P<0·05), and showed fewer clinical symptoms of murine neosporosis, compared to the mice receiving the low-passage parasites. The parasite was detected in the brains of inoculated mice using immunohistochemistry and ITS1 PCR. Tissue cysts containing parasites were seen in mice inoculated with both low-passage and high-passage parasites. When the in vitro growth rates of the parasites were compared, the high-passage parasites initially multiplied more rapidly (P<0·001) than the low-passage parasites, suggesting that the high-passage parasites had become more adapted to tissue culture. These results would suggest that it is possible to attenuate the virulence of N. caninum tachyzoites in mice through prolonged in vitro passage.


2014 ◽  
Vol 6 (10) ◽  
pp. 988-998 ◽  
Author(s):  
Francesco Pampaloni ◽  
Ulrich Berge ◽  
Anastasios Marmaras ◽  
Peter Horvath ◽  
Ruth Kroschewski ◽  
...  

This novel system for the long-term fluorescence imaging of live three-dimensional cultures provides minimal photodamage, control of temperature, CO2, pH, and media flow.


2004 ◽  
Vol 16 (2) ◽  
pp. 163
Author(s):  
S. Baran ◽  
C. Ware

Primate embryonic stem (ES) cells have the ability to self-renew indefinitely while maintaining the ability to differentiate. This unique property allows scientists to study the factors necessary for stem cell self-renewal and differentiation in vitro that reflect in vivo processes. Work with primate ES cells is handicapped by the poor survival (1–5%) of rhesus and human ES cells following standard tissue culture methods of rapid cryopreservation. The purpose of this study was to compare and contrast two cryopreservation techniques, slow cooling combined with ice crystal seeding commonly used for mammalian embryos v. rapid cooling commonly used for tissue culture, to find a method for efficient primate ES cell cryopreservation. A combination of trials was run to compare dimethyl sulfoxide (DMSO) v. ethylene glycol as a cryoprotectant, a cooling rate of 0.3°C per minute following ice crystal seeding at −7°C v. placement at −80°C with no seeding, and rapid thaw with step-wise cryoprotectant removal v. one-step sucrose cryoprotectant removal. Cell survival was assessed through a combination of cell surface markers, alkaline phosphatase staining and morphology to look for undifferentiated cells and quantitate survival. All cryopreservations were performed with the same cell density. The survival of the cells with slow embryo-style cooling in DMSO with a step-wise cryoprotectant removal was 64.0% v. 12.8% with rapid cooling.


2021 ◽  
Vol 13 (1) ◽  
pp. 97
Author(s):  
Muhammad Aris ◽  
Fatma Muchdar ◽  
Rusmawati Labenua

HighlightThe best salinity for the thallus growth of K. alvarezii is 32 mg/LThe salinity indicates the osmotic balance of K. alvarezii seaweedThis osmoregulation process affects the nutrient absorption of K. alvarezii seaweedThis study aims to develop the availibility of superior seeds of K. alvareziiAbstract Kappaphycus alvarezii is one of the leading commodities in Indonesian waters. Demand for this commodity is quite high, as reflected in the increasing volume of exports each year. Fulfillment of these demands is obtained from the production of cultivation. Generally farmers get natural seaweed seedlings, namely cuttings from existing seaweed. The continuous use of seeds from nature can cause deterioration in the quality and quantity. Handling the problem of quality deterioration from seaweed seeds originating from nature, can be overcome by multiplying the seeds through tissue culture methods in vitro. In term of tissue culture techniques method, the most important thing to note is environmental parameters. An environment parameter that changes suddenly such as salinity can inhibit the growth of seaweed. Thus, this work is attampting the different salinity treatment on seaweed explants K. alvarezii. This study aims at determining (weight) the explants of K. alvarezii with a comparison of the different salinity levels in the in vitro tissue culture method. The method used in this study was a completely randomized design (CRD) with the different salinity treatments namely 30, 31, 32, 33, and 34 ppt. The results showed that the different salinities influenced the growth rate of K. alvarezii seaweed explants with the best explant growth at the salinity of 31 ppt, while the lowest growth value was obtained at 34 ppt


Author(s):  
O. A. Bieda ◽  
I. I. Konvaliuk ◽  
L. P. Mozhylevska ◽  
S. S. Lukashov ◽  
V. A. Kunakh ◽  
...  

Cardiovascular diseases are the most common human diseases, hence, the production of cardiological (in particular, anti-arrhythmic) medications from the natural sources is an ever-actual task. Rauwolfia serpentina Benth. is a tropical fruticose plant that is able to produce and concentrate indole alkaloids, especially ajmaline and its derivatives, which are the most effective medications against ventricular arrhythmia with low side effects. Aim of the study. Determination of the qualitative and quantitative content of indole alkaloids in cell biomass of Rauwolfia serpentina tissue culture, obtained by the prolonged in vitro growth. Materials and methods. Object: cell biomass of Rauwolfia serpentina tissue culture (K-27 strain), obtained by methods of long-term cell selection in vitro. Alkaloids content determination: TSQ Vantage LC-MS (ThermoFischer Scientific). Results. 20 indole alkaloids are found in cell biomass of Rauwolfia serpentina tissue culture (K-27 strain). The highest content is registered for ajmaline and its derivatives (0.690 % mass. for ajmaline). The contents of reserpine and yohimbine were found to be as low as 0.009 % and 0.020 %, respectively. Conclusions. It is established that the content of indole alkaloids is higher in K-27 strain in comparison to natural plant and is stable over more than 30 years of its growth. Total alkaloids content was found to be 2.8 % of dry cell biomass, and total ajmaline-type alkaloids content (including ajmaline) was found to be 1.6 % of dry cell biomass. In contrast, the total alkaloid contents in the natural plant material is reported to be in the range of 0.8–1.3 %.


2021 ◽  
Vol 914 (1) ◽  
pp. 012016
Author(s):  
Y Wibisono ◽  
A I Putri ◽  
Y Hadiyan ◽  
L Haryjanto ◽  
L Hakim ◽  
...  

Abstract The high valuable endemic commodities in Papua, Masoyi’s (Cryptocarya massoy) population facing great threat due to unsustainable harvest system. Generative propagation faces significant challenges due to seed characteristics and habitat conditions. Controlled conditions and the role of hormones have an important effect on generative growth. This study aimed to determine the influence of axenic culture with sterilization treatments Isothiazolone Biocide (IB) and 1-Naphtaleaneacetic Acid (NAA) in Murashige and Skoog (MS) medium on seed regeneration and to observe the development of seedlings at the acclimatization stage. The tissue culture method was used. The highest percentage of axenic cultures (57%) was obtained with 5% of BI. The germination rate of masoyi seeds was achieved by 100%. Furthermore, it showed varied responses depending upon concentrations of NAA, the addition of 1 ml l−1 NAA in MS medium is recommended. Acclimatization has been successfully carried out in the greenhouse (67% survival rate) and excellent seedlings growth at nursery (52.35 + 0.6 cm in height after one year transferred). The impact of the controlled conditions and the addition of NAA to axenic cultures in vitro increased the germination of masoyi seeds. Axenic culture and hormones were also important requirements for mass propagation of masoyi by tissue culture.


Author(s):  
Zeliha Çiftçi ◽  
Mizgin Ay ◽  
Ebru Sakar

Known as the world’s most healthy and natural source of vegetable oil, the history of olives dates back to 10,000 years ago. The homeland of olives, a member of the Oleacea family, is Upper Mesopotamia and Southern Asia, including Southeastern Anatolia and Syria. Olives, BC It started to be cultivated on the eastern shores of the Mediterranean in the year 3000 and is one of the first fruit species cultivated in the Mediterranean region. In this respect, olive has an important place in the economy, nutrition and culture of Mediterranean countries. Currently, in most olive growing countries, olive, leafy stem or cuttings are rooted or by propagating stem shoots from seed or clonal stem. However, the so-called table olives are very difficult or completely impossible to root. The olives, which are very difficult to root, should be supported with biotechnological approaches such as micropropagation method in order to increase the product productivity. So far, many fruit species have been propagated in vitro using tissue culture methods and at the same time, some olive varieties have been successfully propagated by micro-propagation method. It made in tissue culture in the world and Turkey Olives have been compiled resources to work for the researchers in this study.


2017 ◽  
Vol 47 (6) ◽  
Author(s):  
Aline Meneguzzi ◽  
Mayra Juline Gonçalves ◽  
Samila Silva Camargo ◽  
Fernanda Grimaldi ◽  
Gabriela Candido Weber ◽  
...  

ABSTRACT: International breeding programs launched new genetic material of apple rootstocks that in addition to precocity and great yield are resistant to major diseases and soil pests encountered in the largest apple producing regions in Brazil. Given this, there is a necessity for vegetative propagation of these materials for study and possible replacement of existing rootstocks. The objective was to adapt a micropropagation protocol for new apple rootstock ‘G. 814’. In the multiplication phase were evaluated BAP concentrations: 0; 0.5; 1; 2 and 4mg L-1 and in the rooting phase were evaluated IBA concentrations: 0; 0.25; 0.50; 1; 1.5 and 2.5mg L-1. These new results demonstrated that this new rootstock selection can be propagated with this tissue culture adapted protocol. For the successful in vitro propagation of apple rootstock ‘G. 814’ it is indicated the use of 1mg L-1 BAP at multiplication phase and 1.5mg L-1 IBA at rooting phase.


Sign in / Sign up

Export Citation Format

Share Document