scholarly journals A transformed proportional-integral-derivative controller for a multi-vectored propeller aerostat with independent actuator magnitude and rate saturations

2020 ◽  
Vol 103 (3) ◽  
pp. 003685042095012
Author(s):  
Li Chen ◽  
Yuxiang Deng ◽  
Qiyuan Gao ◽  
Jinguo Liu

The problem of designing a controller for a multi-vectored propeller airship with independent amplitude and rate saturations is addressed. First, a linear Proportional-Integral-Derivative (PID) controller is introduced for position control without considering the input saturations. Then, two design methods are applied to the traditional PID control output to satisfy the independent amplitude and rate constraints: the nested saturated PID controller (N-PID) and the transformed PID controller (T-PID). The bounded magnitudes and rate outputs of the modified controllers are given. Simulation results showed both controllers have good tracking performance while satisfying independent amplitude and rate saturations. However, the transformed PID controller has the advantage of expressing explicitly the relationship of the actuator magnitude and rate saturations with the parameters of the transformed function such that the actuator saturations are suppressed by calculation but not by trial and error.

2014 ◽  
Vol 903 ◽  
pp. 327-331 ◽  
Author(s):  
Ismail Mohd Khairuddin ◽  
Anwar P.P.A. Majeed ◽  
Ann Lim ◽  
Jessnor Arif M. Jizat ◽  
Abdul Aziz Jaafar

This paper elucidates the modeling of a + quadrotor configuration aerial vehicle and the design of its attitude and altitude controllers. The aircraft model consists of four fixed pitch angle propeller, each driven by an electric DC motor. The hovering flight of the quadrotor is governed by the Newton-Euler formulation. The attitude and altitude controls of the aircraft were regulated using heuristically tuned (Proportional-Integral-Derivative) PID controller. It was numerically simulated via Simulink that a PID controller was sufficient to bring the aircraft to the required altitude whereas the attitude of the vehicle is adequately controlled by a PD controller.


Author(s):  
Nguyen Van Tan ◽  
Khoa Nguyen Dang ◽  
Pham Duc Dai ◽  
Long Vu Van

Haptic devices had known as advanced technology with the goal is creating the experiences of touch by applying forces and motions to the operator based on force feedback. Especially in unmanned aerial vehicle (UAV) applications, the position of the end-effector Falcon haptic sets the velocity command for the UAV. And the operator can feel the experience vibration of the vehicle as to the acceleration or collision with other objects through a forces feedback to the haptic device. In some emergency cases, the haptic can report to the user the dangerous situation of the UAV by changing the position of the end-effector which is be obtained by changing the angle of the motor using the inverse kinematic equation. But this solution may not accurate due to the disturbance of the system. Therefore, we proposed a position controller for the haptic based on a discrete-time proportional integral derivative (PID) controller. A Novint Falcon haptic is used to demonstrate our proposal. From hardware parameters, a Jacobian matrix is calculated, which combines with the force output from the PID controller to make the torque for the motors of the haptic. The experiment was shown that the PID has high accuracy and a small error position.


JURNAL ELTEK ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 81
Author(s):  
Muchlis Dwi Ardiansyah ◽  
Fatkhur Rohman

Pemanfaatan teknologi alternatif dalam bidang otomotif maupun otomasi industri menggunakan motor Brushless Direct Current (BLDC) sudah banyak digunakan karena memiliki kelebihan dibanding dengan jenis mesin penggerak bertenaga elektrik lainnya. Namun motor BLDC masih memiliki beberapa kekurangan ketika menerima beban sehingga menyebabkan penurunan kecepatan putaran pada motor BLDC. Tujuan penelitian ini adalah untuk merancang dan mengaplikasikan sistem kendali kecepatan motor BLDC dengan kontrol Proportional Integral Derivative (PID) dan menentukan nilai parameter untuk mendapatkan persentase error steady state terkecil pada variasi  kecepatan dan beban motor BLDC. Metode pengambilan data diambil dengan cara memasukkan nilai parameter secara trial and error. Sebagai simulasi beban, motor BLDC dihubungkan dengan generator yang diberi beban berupa lampu yang divariasikan. Hasil pengujian mendapatkan pemodelan blok diagram PID dengan Matlab Simulink. Hasil parameter kontrol PID diperoleh nilai Kp = 1,5; Ki = 10,5 dan Kd = 0,04. Dengan nilai parameter tersebut motor BLDC dapat mempertahankan nilai set point dengan kestabilan yang tinggi (error steady state rendah).   The usage of alternative technology in the field of automotive and industrial automation using Brushless Direct Current (BLDC) has been widely used because it has advantages compared to other types of electric-powered drive engines. But the BLDC motor still has some disadvantages when receiving a load that causes a decrease in rotation speed on the BLDC motor. The purpose of the study is to design and apply a BLDC motor speed control system with a Proportional Integral Derivative (PID) control and determine the parameter value to obtain the smallest error steady state percentage at a speed variation and motor load the BLDC. The method of retrieving data was taken by entering parameter values by trial and error. As a load simulation, the BLDC motor was connected to a generator that was given the load in the form of a varied lamp. The test results gets the PID block diagram modeling with Matlab Simulink. The results of the PID control parameter are Kp = 1.5; Ki = 10.5 and Kd = 0.04. With these parameter values, the BLDC motor can maintain the setpoint value with high stability (low steady-state error).


2016 ◽  
Vol 12 (06) ◽  
pp. 54
Author(s):  
Kim Seng Chia ◽  
Xien Yin Yap

<span style="font-family: 'Times New Roman',serif; font-size: 10pt; mso-fareast-font-family: SimSun; mso-fareast-theme-font: minor-fareast; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;">A proportional-integral-derivative (PID) controller is a classical controller that has been applied in numerous applications. One learning lesson of PID control theory is to tune its proportional, integral, and derivative parameters so that the performance of system is optimal. Besides, teaching PID control theory verbally is challenging especially when transient response characteristics e.g. overshoot, rise time, and settling time are introduced. Thus, this study investigates the feasibility of a low cost mobile robot in conveying the knowledge of PID control theory. First, an inexpensive open-source mobile robot was modified so that the position of the robot can be recorded and visualized wirelessly. Second, a graphical user interface was built to visualize the movement of the robot. Lastly, the PID parameters were tuned and their effects were recorded and analyzed quantitatively. Findings show that the proposed method is capable of demonstrating the effects of P and D parameters correctly. </span>


Author(s):  
Danish Saifi ◽  
Pramod Kumar

We are discussing active suspension in this research. It also includes an actuator or controller (ECU), wheels and body. The rider feels comfort in travelling due to the use of these types of suspension. Because it controls vertical moments or moves of the wheels and stable rider or passenger. It is most important in the automobile industries. There are many types of controllers used for fine control to vibration caused by wheels. E.g., PID controllers, it stands for Proportional Integral Derivative. PID controller provides better simultaneous vibration of the output of the control loop. It also used for improving the performance of the suspension system. We can do modelling and simulation carried out in MATLAB software for active suspension.


The classical proportional integral derivative (PID) controllers are still use in various applications in industry. Magnetic levitation (ML) systems are rigidly nonlinear and sometimes unstable systems. Due to inbuilt nonlinearities of ML systems, tracking of position of ML Systems is still difficult. For the tracking purpose of position, PID controller parameters are found by choosing Cuckoo Search Algorithm (CSA) of optimization. The ranges of parameters are customized by z-n method of parameters. Simulation results show the tracking of position of ML systems using conventional and optimized parameters obtained with the CSA based controller.


Author(s):  
WAHYU AULIA NURWICAKSANA ◽  
BUDHY SETIAWAN ◽  
IKA NOER SYAMSIANA ◽  
SEPTYANA RISKITASARI

ABSTRAKVAWT (Vertical Axis Wind Turbine) tipe Darrieus NACA0015 merupakan salah satu model dari turbin angin yang bekerja dengan menggunakan angin sebagai sumber penggerak. Namun dari hasil pengamatan, kecepatan angin yang ada tidak konstan setiap saat. Sehingga dari permasalahan ini perlu suatu kontrol yaitu dengan mengendalikan sudut kerja blade VAWT yang dikenal dengan kontrol angle of attack (AoA). Prinsip kerja kontrol AoA yaitu sudut blade diatur agar VAWT bekerja secara optimum dan dapat meningkatkan efisiensi. Metode kontrol AoA menggunakan PID (Proportional–Integral–Derivative) dengan memberikan nilai trial and error pada Kp, Ki, Kd. VAWT ini menggunakan konstanta TSR (Tip Speed Ratio) yaitu 4. Hasil dari penelitian ini yaitu daya yang dihasilkan VAWT dengan kontrol AoA mendapatkan rata-rata efisiensi sebesar 5.16%, sedangkan VAWT tanpa kontrol mendapatkan efisiensi sebesar 3.49%. Sehingga dapat disimpulkan bahwa dengan kontrol AoA, rata-rata efisiensi dayanya naik sebesar 1.67% dari yang tanpa kontrol.Kata Kunci: Kontrol Angle of Attack (AoA), VAWT, TSR, Efisiensi ABSTRACTVAWT (Vertical Axis Wind Turbine) type Darrieus NACA0015 is one model of a wind turbine that works by using wind as a source of propulsion. Conditions from observations, wind speeds that are not constant every time. So from this problem needs control VAWT by controlling the working angle of the VAWT blade is the angle of attack control (AoA). The principle AoA control is that the blade angle adjusted so that the VAWT works optimally and can improve the efficiency. AoA control method uses PID (Proportional-Integral-Derivative) by providing trial and error values for Kp, Ki, Kd. VAWT uses TSR (Tip Speed Ratio) constant which is 4. The results of this research, VAWT with AoA control get an average efficiency of 5.16%, while without control gets an average efficiency of 3.49%. So it can be concluded that with AoA control, the average power efficiency increases by 1.67% from those without control.Keywords: Angle of Attack (AoA) Control, VAWT, TSR, Efficiency


2018 ◽  
Vol 15 (2) ◽  
pp. 93 ◽  
Author(s):  
Muhammad Fajar ◽  
Ony Arifianto

The autopilot on the aircraft is developed based on the mode of motion of the aircraft i.e. longitudinal and lateral-directional motion. In this paper, an autopilot is designed in lateral-directional mode for LSU-05 aircraft. The autopilot is designed at a range of aircraft operating speeds of 15 m/s, 20 m/s, 25 m/s, and 30 m/s at 1000 m altitude. Designed autopilots are Roll Attitude Hold, Heading Hold and Waypoint Following. Autopilot is designed based on linear model in the form of state-space. The controller used is a Proportional-Integral-Derivative (PID) controller. Simulation results show the value of overshoot / undershoot does not exceed 5% and settling time is less than 30 second if given step command. Abstrak Autopilot pada pesawat dikembangkan berdasarkan pada modus gerak pesawat yaitu modus gerak longitudinal dan lateral-directional. Pada makalah ini, dirancang autopilot pada modus gerak lateral-directional untuk pesawat LSU-05. Autopilot dirancang pada range kecepatan operasi pesawat yaitu 15 m/dtk, 20 m/dtk, 25 m/dtk, dan 30 m/dtk dengan ketinggian 1000 m. Autopilot yang dirancang adalah Roll Attitude Hold, Heading Hold dan Waypoint Following. Autopilot dirancang berdasarkan model linier dalam bentuk state-space. Pengendali yang digunakan adalah pengendali Proportional-Integral-Derivative (PID). Hasil simulasi menunjukan nilai overshoot/undershoot tidak melebihi 5% dan settling time kurang dari 30 detik jika diberikan perintah step.


Sign in / Sign up

Export Citation Format

Share Document