scholarly journals Mathematical model and characteristics analysis of crossed-axis helical gear drive with small angle based on curve contact element

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110162
Author(s):  
Dong Liang ◽  
Sheng Meng ◽  
Rulong Tan

To improve load capacity and transmission characteristics of crossed-axis helical gear drive, a generation approach of the gear pair with small-angle based on the curve contact element is proposed. Contact principle based on spatial curve meshing relationships is introduced and geometric models of tooth profiles are developed according to a pair of mated conjugate curves. Furthermore, a mathematical model of crossed-axis helical gear drive with small-angle is established. Numerical examples are illustrated for this research using the 10° shaft angle, and the computerized simulation is also developed based on the solid models. According to gear geometry and finite element method, general characteristics including undercutting conditions, sliding ratios and contact stress for tooth profiles are analyzed. Comparisons with crossed-axis involute gears are also carried out. Finally, the gear prototype is processed using the gear milling method and a basic performance test is conducted. Analysis results show that the new gear pair has well contact characteristics. Further studies on the dynamic analysis and precision manufacturing method will be carried out.

Author(s):  
Xuan Li ◽  
Bingkui Chen ◽  
Yawen Wang ◽  
Guohua Sun ◽  
Teik C. Lim

In this paper, the planar double-enveloping method is presented for the generation of tooth profiles of the internal gear pair for various applications, such as gerotors and gear reducers. The main characteristic of this method is the existence of double contact between one tooth pair such that the sealing property, the load capacity and the transmission precision can be significantly improved as compared to the conventional configuration by the single-enveloping theory. Firstly, the generation principle of the planar double-enveloping method is introduced. Based on the coordinate transformation and the envelope theory, the general mathematical model of the double-enveloping internal gear pair is presented. By using this model, users can directly design different geometrical shape profiles to obtain a double-enveloping internal gear pair with better meshing characteristics. Secondly, to validate the effectiveness of the proposed model, specific mathematical formulations of three double-enveloping internal gear pairs which apply circular, parabolic and elliptical curves as the generating curves are given. The equations of tooth profiles and meshing are derived and the composition of tooth profiles is analyzed. Finally, numerical examples are provided for an illustration.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1935 ◽  
Author(s):  
Yu Dai ◽  
Feiyue Ma ◽  
Xiang Zhu ◽  
Qiao Su ◽  
Xiaozhou Hu

The oil jet lubrication performance of a high-speed and heavy-load gear drive is significantly influenced and determined by the oil jet nozzle layout, as there is extremely limited meshing clearance for the impinging oil stream and an inevitable blocking effect by the rotating gears. A novel mathematical model for calculating the impingement depth of lubrication oil jetting on an orthogonal face gear surface has been developed based on meshing face gear theory and the oil jet lubrication process, and this model contains comprehensive design parameters for the jet nozzle layout and face gear pair. Computational fluid dynamic (CFD) numerical simulations for the oil jet lubrication of an orthogonal face gear pair under different nozzle layout parameters show that a greater mathematically calculated jet impingement depth results in a greater oil volume fraction and oil pressure distribution. The influences of the jet nozzle layout parameters on the lubrication performance have been analyzed and optimized. The relationship between the measured tooth surface temperature from the experiments and the corresponding calculated impingement depth shows that a lower temperature appears in a situation with a greater impingement depth. Good agreement between the mathematical model with the numerical simulation and the experiment validates the effectiveness and accuracy of the method for evaluating the face gear oil jet lubrication performance when using the impingement depth mathematical model.


Author(s):  
Milan Rackov ◽  
Mirko Blagojević ◽  
Siniša Kuzmanović ◽  
Miloš Matejić ◽  
Ivan Knežević ◽  
...  

Author(s):  
Dong Liang ◽  
Bingkui Chen ◽  
Yane Gao

A new involute-helix gear drive, which is point contact with convex and concave circular-arc tooth profiles, is proposed in this article. The basic principle characterized by the advantages of involute and circular-arc gears is put forward. Based on the theory of conjugates curves, generation and mathematical model of this new transmission are presented. The separability of center distance on involute-helix gear is discussed and meshing characteristic of point contact is also analyzed. Finally, the three-dimensional solid model of a gear pair is developed to demonstrate the properties of this new transmission.


2020 ◽  
Author(s):  
Abhijeet P Shah ◽  
Yuvraj Jadhav

Abstract The design procedure, load capacity, mathematical model, analysis of worm and worm gear for plug valve has not been investigated, which is a great barrier for the users. This research focuses on addressing these issues by design of gear, developing mathematical model, dynamic analysis of gear and experimental study to find out efficiency of worm gear for plug valve application.


2021 ◽  
pp. 1-16
Author(s):  
Siyu Wang ◽  
Rupeng Zhu

Abstract Based on “slice method”, the improved time-varying mesh stiffness (TVMS) calculation model of helical gear pair with tooth surface wear is proposed, in which the effect of friction force that obtained under mixed elasto-hydrodynamic lubrication (EHL) is considered in the model. Based on the improved TVMS calculation model, the dynamic model of helical gear system is established, then the influence of tooth wear parameters on the dynamic response is studied. The results illustrate that the varying reduction extents of mesh stiffness along tooth profile under tooth surface wear, in addition, the dynamic response in time-domain and frequency-domain present significant decline in amplitude under deteriorating wear condition.


2013 ◽  
Vol 690-693 ◽  
pp. 2371-2378
Author(s):  
Wei Pu Xu ◽  
Yi Ting Liu

A brief overview is given in the conventional domed bursting disc structure and manufacturing method. 316L stainless steel as a template is selected. With the investigation on bursting disc material tensile test method, the test results are summarized,also the burst results of disc burst pressure in different sizes. With the help of bursting disc material performance test and bursting disc burst pressure test of 316L , the test results provide a reference for other types of bursting disc.


Sign in / Sign up

Export Citation Format

Share Document