Structure and properties of ethylene-tetrafluoroethylene fibers fabricated by melt spinning

2017 ◽  
Vol 88 (10) ◽  
pp. 1112-1124 ◽  
Author(s):  
Lele Sun ◽  
Changfa Xiao ◽  
Jian Zhao ◽  
Shulin An ◽  
Shichao Zhang

Ethylene-tetrafluoroethylene (ETFE) fibers were fabricated by a single-screw melt spinning machine at different drawing roll speed ratios and different drawing roll temperatures. Thermogravimetric analyzer, differential scanning calorimetry, X-ray diffraction (XRD), digital fiber sound velocimeter and single fiber strength testers were used to discuss the impacts of spinning processes on the structure and performance of ETFE fibers. The results indicated that four different fibers showed a similar melting temperature at around 257℃. XRD results revealed that the largest crystallinity of four ETFE fibers was 41.1%. As the drawing temperature increased, the crystallinity of ETFE fibers decreased and the grain size increased. The breaking strength of four as-spun ETFE fibers reached up to 1.12 cN/dtex. The minimum shrinkage of ETFE fibers at 200℃ was 7%, and it was only 1% at most below 150℃. The maximum creep strain of ETFE fibers was 6% when the loading capacity was 20% of the breaking strength at room temperature and ETFE fibers had a high recovery ratio of >90% after the load was removed. Moreover, ETFE fibers showed exceptional corrosion resistance and good performance of irradiation resistance.

2016 ◽  
Vol 46 (5) ◽  
pp. 1281-1293 ◽  
Author(s):  
Min Wang ◽  
Bin Yu ◽  
Jian Han ◽  
Weimin Song ◽  
Feichao Zhu

The properties of fibers were significantly affected by drawing during the spunbond process. In this paper, the influence of drawing pressure on the properties of spunbonded PET/PA6 hollow pie wedge bicomponent filaments was studied, and their performance was characterized by differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, Beion F6 fiber fineness tester, and single fiber strength tester. The hollow pie wedge bicomponent fiber had a distinct interface between the two polymers due to poor compatibility. With increasing of drawing pressure, diameter of the fibers reduced regularly. When the drawing pressure increased, both the degree of crystallinity and orientation of bicomponent fibers enhanced, and the melting point of polyester component increased as well. Furthermore, with increasing of drawing pressure, the breaking strength of the fibers increased, but the breaking elongation and linear density decreased.


2011 ◽  
Vol 479 ◽  
pp. 54-61 ◽  
Author(s):  
Fei Wang ◽  
Ya Ping Wang

Microstructure evolution of high energy milled Al-50wt%Si alloy during heat treatment at different temperature was studied. Scanning electron microscope (SEM) and X-ray diffraction (XRD) results show that the size of the alloy powders decreased with increasing milling time. The observable coarsening of Si particles was not seen below 730°C in the high energy milled alloy, whereas, for the alloy prepared by mixed Al and Si powders, the grain growth occurred at 660°C. The activation energy for the grain growth of Si particles in the high energy milled alloy was determined as about 244 kJ/mol by the differential scanning calorimetry (DSC) data analysis. The size of Si particles in the hot pressed Al-50wt%Si alloy prepared by high energy milled powders was 5-30 m at 700°C, which was significantly reduced compared to that of the original Si powders. Thermal diffusivity of the hot pressed Al-50wt%Si alloy was 55 mm2/s at room temperature which was obtained by laser method.


2013 ◽  
Vol 2 (1) ◽  
Author(s):  
Samantha Cristina Pinho ◽  
Janaina Costa Da Silva

Solid lipid microparticles produced with a mixture of cupuacu butter and stearic acid were used to microencapsulate a commercial casein hydrolysate (Hyprol 8052). The composition of the lipid matrix used for the production of the lipid microparticles was chosen according to data on the wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) of bulk lipid mixtures, which indicated that the presence of 10 % cupuacu butter was sufficient to significantly change the crystalline arrangement of pure stearic acid. Preliminary tests indicated that a minimum proportion of 4 % of surfactant (polysorbate 80) was necessary to produce empty spherical lipid particles with average diameters below 10 mm. The lipid microparticles were produced using 20 % cupuacu butter and 80 % stearic acid and then stabilized with 4 % of polysorbate 80, exhibiting an encapsulation efficiency of approximately 74 % of the casein hydrolysate. The melting temperature of the casein hydrolysate-loaded lipid microparticles was detected at 65.2 °C, demonstrating that the particles were solid at room temperature as expected and indicating that the incorporation of peptides had not affected their thermal behavior. After 25 days of storage, however, there was a release of approximately 30 % of the initial amount of encapsulated casein hydrolysate. This release was not thought to have been caused by the liberation of encapsulated casein hydrolysate. Instead, it was attributed to the possible desorption of the adsorbed peptides present on the surface of the lipid microparticles.


2012 ◽  
Vol 535-537 ◽  
pp. 950-953
Author(s):  
Li Na Bai ◽  
Gui Xing Zheng ◽  
Zhi Jian Duan ◽  
Jian Jun Zhang

The influences of Gd concentration on martensitic transformation and magnetic properties of NiMnIn alloys were investigated by differential scanning calorimetry (DSC) , vibrating sample magnetometry (VSM), X-ray diffraction (XRD) and etc. It is Observed through the experiment: the addition of Gd enhances martensite transition temperature;X-ray diffraction analysis of experimental alloys is revealed that to the mixture is martensite and austenite at room temperature; content of Gd is not proportional to the improvement of magnetic property.


2021 ◽  
pp. 2150407
Author(s):  
S. I. Ibrahimova

The crystal structure and thermal properties of the [Formula: see text] compound have been investigated. Structural studies were performed by X-ray diffraction at room temperature. The crystal structure of this compound was found to correspond to the hexagonal symmetry of the space group P61. Thermal properties were studied using a differential scanning calorimetry (DSC). It was found in the temperature range [Formula: see text] that thermal effects occur at temperatures [Formula: see text] and [Formula: see text]. The thermodynamic parameters of these effects are calculated.


Author(s):  
Tamara J. Bednarchuk ◽  
Wolfgang Hornfeck ◽  
Vasyl Kinzhybalo ◽  
Zhengyang Zhou ◽  
Michal Dušek ◽  
...  

The organic–inorganic hybrid compound 4-aminopyridinium tetraaquabis(sulfato)iron(III), (C5H7N2)[FeIII(H2O)4(SO4)2] (4apFeS), was obtained by slow evaporation of the solvent at room temperature and characterized by single-crystal X-ray diffraction in the temperature range from 290 to 80 K. Differential scanning calorimetry revealed that the title compound undergoes a sequence of three reversible phase transitions, which has been verified by variable-temperature X-ray diffraction analysis during cooling–heating cycles over the temperature ranges 290–100–290 K. In the room-temperature phase (I), space group C2/c, oxygen atoms from the closest Fe-atom environment (octahedral) were disordered over two equivalent positions around a twofold axis. Two intermediate phases (II), (III) were solved and refined as incommensurately modulated structures, employing the superspace formalism applied to single-crystal X-ray diffraction data. Both structures can be described in the (3+1)-dimensional monoclinic X2/c(α,0,γ)0s superspace group (where X is ½, ½, 0, ½) with modulation wavevectors q = (0.2943, 0, 0.5640) and q = (0.3366, 0, 0.5544) for phases (II) and (III), respectively. The completely ordered low-temperature phase (IV) was refined with the twinning model in the triclinic P{\overline 1} space group, revealing the existence of two domains. The dynamics of the disordered anionic substructure in the 4apFeS crystal seems to play an essential role in the phase transition mechanisms. The discrete organic moieties were found to be fully ordered even at room temperature.


2011 ◽  
Vol 284-286 ◽  
pp. 1774-1777 ◽  
Author(s):  
Chang Kun Ding ◽  
Bo Wen Cheng ◽  
Qiong Wu

Biodegradable fibers of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) were prepared by melt spinning, followed by one-step-drawing with small crystal nuclei grown after isothermal crystallization near the glass transition temperature (Tg) and annealing at room temperature under tension. This new drawing technique is a very attractive method for obtaining flexible fibers from low-molecular-weight biopolyesters produced by recombinant bacteria. The ordered structure of PHBHHx fibers was investigated by tensile measurement, scanning electron microscopy, and wide-angle X-ray diffraction (WAXD). The tensile strength of 10 times one-step-drawn fiber after isothermal crystallization increased to 100 MPa. The WAXD profiles of PHBHHx fibers showed sharp reflections corresponding to highly oriented α-form (21helix conformation) crystal.


2012 ◽  
Vol 7 (3) ◽  
pp. 155892501200700 ◽  
Author(s):  
Sanjukta Chatterjee ◽  
Felix A. Reifler ◽  
Bryan T. Chu ◽  
Rudolf Hufenus

This paper addresses the influence of carbon nanotubes (CNT) on the structure and mechanical properties of high tensile strength thermoplastic polymer fibers. Polyamide (PA) fibers with different draw ratios, with and without CNTs as fillers, and having mechanical properties close to industrial standards were spun in a pilot melt spinning plant. The morphology of the fibers was investigated using optical microscopy, nuclear magnetic resonance (NMR) and 2-D wide angle x-ray diffraction (WAXD). Differential scanning calorimetry (DSC) was carried out to get an estimate of the crystallinity. For a concise interpretation of the results of the tensile measurements performed on the fibers, a parameter was developed to account for the detrimental influence of polymer extrusion on their mechanical properties. The CNTs seemed to act as sites for the growth of un-oriented crystalline domains converted from oriented regions, without yielding a mechanical reinforcing effect.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2714
Author(s):  
Min Zuo ◽  
Boda Ren ◽  
Zihan Xia ◽  
Wenwen Ma ◽  
Yidan Lv ◽  
...  

In this article, the modification effects on Al–Mg2Si before and after heat treatment were investigated with Ca, Sb, and (Ca + Sb). In comparison with single Ca or Sb, the samples with composition modifiers (Ca + Sb) had the optimal microstructure. The sample with a molar ratio for Ca-to-Sb of 1:1 obtained relatively higher properties, for which the Brinell hardness values before and after heat treatment were remarkably increased by 31.74% and 28.93% in comparison with bare alloy. According to differential scanning calorimetry analysis (DSC), it was found that the nucleation behavior of the primary Mg2Si phase could be significantly improved by using chemical modifiers. Some white particles were found to be embedded in the center of Mg2Si phases, which were deduced to be Ca5Sb3 through X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM) analyses. Furthermore, Ca5Sb3 articles possess a rather low mismatch degree with Mg2Si particles based on Phase Transformation Crystallography Lab software (PTCLab) calculation, meaning that the efficient nucleation capability of Ca5Sb3 for Mg2Si particles could be estimated.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 853
Author(s):  
Rim Ameur ◽  
Mahmoud Chemingui ◽  
Tarek Bachaga ◽  
Lluisa Escoda ◽  
Mohamed Khitouni ◽  
...  

The structure and thermal behavior are key factors that influence the functional response of Ni–Mn–Sn alloys. The present study reports the production as well as the structure and thermal analysis of melt-spun (solidification rate: 40 ms−1) Ni50 Mn50−xSnx (x = 10, 11, 12 and 13 at.%) alloys. X-ray diffraction measurements were performed at room temperature. The austenite state has an L21 structure, whereas the structure of the martensite is 7M or 10M (depending on the Sn/Mn percentage). Furthermore, the structural martensitic transformation was detected by differential scanning calorimetry (DSC). As expected, upon increasing the Sn content, the characteristic temperatures also increase. The same tendency is detected in the thermodynamic parameters (entropy and enthalpy). The e/a control allows the development production of alloys with a transformation close to room temperature.


Sign in / Sign up

Export Citation Format

Share Document