Development of superamphiphobic alumina nanofiber mats using trimethoxysilane with a short perfluoroalkyl chain

2017 ◽  
Vol 88 (16) ◽  
pp. 1803-1811 ◽  
Author(s):  
Shuya Gao ◽  
Koji Nakane ◽  
Akiyoshi Ohgoshi ◽  
Tadayuki Isaji ◽  
Masaaki Ozawa

To avoid the generation of hazardous, long-chain perfluoroalkyl carboxylic acids (C nF2 n+1COOH, n ≥ 7), we develop relatively safer superamphiphobic alumina nanofiber mats. Our fabrication process focuses on two principles: lowering the surface energy using trimethoxy(1H, 1H, 2H, 2H-nonafluorohexyl)silane (C4F9CH2CH2Si(OCH3)3), which has short-chain perfluoroalkyls that are relatively safer than long-chain ones; and creating a high-roughness surface from electrospun alumina nanofibers with an average fiber diameter of 155 nm and inter-fiber spacing of 451 nm. Such mats exhibit super-repellency for water (contact angle [Formula: see text] = 157°, contact angle hysteresis [Formula: see text], advancing angle [Formula: see text] 158°, receding angle [Formula: see text] 156°), and n-hexadecane ([Formula: see text] = 151°, [Formula: see text]9°, [Formula: see text] 152°, [Formula: see text] 143°). Furthermore, superamphiphobicity is maintained up to 350℃.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Sarfaraz U. Patel ◽  
Gabriel M. Manzo ◽  
Shagufta U. Patel ◽  
Prashant S. Kulkarni ◽  
George G. Chase

This paper discusses the fabrication and characterization of electrospun nanofiber mats made up of poly(4-methyl-1-pentene) polymer. The polymer was electrospun in different weight concentrations. The mats were characterized by their basis weight, fiber diameter distribution, contact angles, contact angle hysteresis, and air permeability. All of the electrospun nonwoven fiber mats had water contact angles greater than 150 degrees making them superhydrophobic. The permeabilities of the mats were empirically fitted to the mat basis weight by a linear relation. The experimentally measured air permeabilities were significantly larger than the permeabilities predicted by the Kuwabara model for fibrous media.


2012 ◽  
Vol 706-709 ◽  
pp. 2874-2879 ◽  
Author(s):  
R. Jafari ◽  
Masoud Farzaneh

Superhydrophobic surfaces were prepared using a very simple and low-cost method by spray coating. A high static water contact angle of about 154° was obtained by deposition of stearic acid on an aluminium alloy. However, this coating demonstrated a high contact angle hysteresis (~ 30º). On the other hand, superhydrophobic surfaces with a static contact angle of about 162º and 158º, and a low contact angle hysteresis of about 3º and 5º were respectively obtained by incorporating nanoparticles of SiO2and CaCO3in stearic acid. The excellent resulting hydrophobicity is attributed to the synergistic effects of micro/nanoroughness and low surface energy. A study of the wettability of these surfaces at temperatures ranging from 20 to-10 °C showed that the superhydrophobic surface becomes rather hydrophobic at supercooled temperatures.


Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 677 ◽  
Author(s):  
Zhengyong Huang ◽  
Wenjie Xu ◽  
Yu Wang ◽  
Haohuan Wang ◽  
Ruiqi Zhang ◽  
...  

In this study, we develop a facial one-step approach to prepare durable super-hydrophobic coatings on glass surfaces. The hydrophobic characteristics, corrosive liquid resistance, and mechanical durability of the super-hydrophobic surface are presented. The as-prepared super-hydrophobic surface exhibits a water contact angle (WCA) of 157.2° and contact angle hysteresis of 2.3°. Mico/nano hierarchical structures and elements of silicon and fluorine is observed on super-hydrophobic surfaces. The adhesion strength and hardness of the surface are determined to be 1st level and 4H, respectively. The coating is, thus, capable of maintaining super-hydrophobic state after sand grinding with a load of 200 g and wear distances of 700 mm. The rough surface retained after severe mechanical abrasion observed by atomic force microscope (AFM) microscopically proves the durable origin of the super-hydrophobic coating. Results demonstrate the feasibility of production of the durable super-hydrophobic coating via enhancing its adhesion strength and surface hardness.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1526 ◽  
Author(s):  
Ronaldo P. Parreño ◽  
Ying-Ling Liu ◽  
Arnel B. Beltran

This study demonstrated the processability of sulfur copolymers (SDIB) into polymer blend with polybenzoxazines (PBz) and their compatibility with the electrospinning process. Synthesis of SDIB was conducted via inverse vulcanization using elemental sulfur (S8). Polymer blends produced by simply mixing with varying concentration of SDIB (5 and 10 wt%) and fixed concentration of PBz (10 wt%) exhibited homogeneity and a single-phase structure capable of forming nanofibers. Nanofiber mats were characterized to determine the blending effect on the microstructure and final properties. Fiber diameter increased and exhibited non-uniform, broader fiber diameter distribution with increased SDIB. Microstructures of mats based on SEM images showed the occurrence of partial aggregation and conglutination with each fiber. Incorporation of SDIB were confirmed from EDX which was in agreement with the amount of SDIB relative to the sulfur peak in the spectra. Spectroscopy further confirmed that SDIB did not affect the chemistry of PBz but the presence of special interaction benefited miscibility. Two distinct glass transition temperatures of 97 °C and 280 °C indicated that new material was produced from the blend while the water contact angle of the fibers was reduced from 130° to 82° which became quite hydrophilic. Blending of SDIB with component polymer proved that its processability can be further explored for optimal spinnability of nanofibers for desired applications.


Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 398 ◽  
Author(s):  
Chongwei Du ◽  
Xiaoyan He ◽  
Feng Tian ◽  
Xiuqin Bai ◽  
Chengqing Yuan

Corrosion seriously limits the long-term application of Q235 carbon steel. Herein, a simple fabrication method was used to fabricate superhydrophobic surfaces on Q235 carbon steel for anticorrosion application. The combination of structure and the grafted low-surface-energy material contributed to the formation of superhydrophobic steel surfaces, which exhibited a water contact angle of 161.6° and a contact angle hysteresis of 0.8°. Meanwhile, the as-prepared superhydrophobic surface showed repellent toward different solutions with pH ranging from 1 to 14, presenting excellent chemical stability. Moreover, the acid corrosive liquid (HCl solution with pH of 1) maintained sphere-like shape on the as-prepared superhydrophobic surface at room temperature, indicating superior corrosion resistance. This work provides a simple method to fabricate superhydrophobic steel surfaces with chemical stability and corrosion resistance.


Author(s):  
Konstantinos Ritos ◽  
Nishanth Dongari ◽  
Yonghao Zhang ◽  
Jason M. Reese

We report molecular dynamics (MD) simulations of the dynamic wetting of nanoscale droplets on moving surfaces. The dynamic water contact angle and contact angle hysteresis are measured as a function of capillary number on smooth silicon and graphite surfaces. The hydrogen bonding and density profile variations are also reported, and the width of the water depletion layer is evaluated for droplets on three different static surfaces: silicon, graphite and a fictitious super-hydrophobic surface. Our results show that molecular displacements at the contact line are mostly influenced by interactions with the solid surface, while the viscous dissipation effects induced through the movement of surfaces are found to be negligible, especially for hydrophobic surfaces. This finding is in contrast with the wetting dynamics of macroscale droplets, which show significant dependence on the capillary number. This study may yield new insight into surface-wettability characteristics of nano droplets, in particular, developing new boundary conditions for continuum solvers for liquid flows in micro- and nanoscale devices.


2008 ◽  
Vol 3 (4) ◽  
pp. 155892500800300 ◽  
Author(s):  
Karthik Ramaratnam ◽  
Swaminatha K. Iyer ◽  
Mark K. Kinnan ◽  
George Chumanov ◽  
Phillip J. Brown ◽  
...  

It is well established that the water wettability of materials is governed by both the chemical composition and the geometrical microstructure of the surface.1 Traditional textile wet processing treatments do indeed rely fundamentally upon complete wetting out of a textile structure to achieve satisfactory performance.2 However, the complexities introduced through the heterogeneous nature of the fiber surfaces, the nature of the fiber composition and the actual construction of the textile material create difficulties in attempting to predict the exact wettability of a particular textile material. For many applications the ability of a finished fabric to exhibit water repellency (in other words low wettability) is essential2 and potential applications of highly water repellent textile materials include rainwear, upholstery, protective clothing, sportswear, and automobile interior fabrics. Recent research indicates that such applications may benefit from a new generation of water repellent materials that make use of the “lotus effect” to provide ultrahydrophobic textile materials.3,4 Ultrahydrophobic surfaces are typically termed as the surfaces that show a water contact angle greater than 150°C with very low contact angle hysteresis.4 In the case of textile materials, the level of hydrophobicity is often determined by measuring the static water contact angle only, since it is difficult to measure the contact angle hysteresis on a textile fabric because of the high levels of roughness inherent in textile structures.


2018 ◽  
Vol 941 ◽  
pp. 1802-1807 ◽  
Author(s):  
Khosrow Maghsoudi ◽  
Gelareh Momen ◽  
Reza Jafari ◽  
Masoud Farzaneh ◽  
Tony Carreira

A facile method is introduced for production of micro-nanostructured silicone rubber surfaces by means of direct replication using a compression molding system. The fabricated samples possessing surface roughness display water contact angle of more than 160o and contact angle hysteresis (CAH) and sliding angle of less than 5o. Such low surface wettability of silicone specimens verifies the induced superhydrophobic property. Chemically etched aluminum surfaces could work excellently as templates whose patterns were replicated on the rubber surfaces successfully. Various etching conditions were examined. Surface characterization techniques revealed the presence of micro-nanostructures on the produced silicone surfaces.


2016 ◽  
Vol 15 (01n02) ◽  
pp. 1650005 ◽  
Author(s):  
Natthan Charernsriwilaiwat ◽  
Theerasak Rojanarata ◽  
Tanasait Ngawhirunpat ◽  
Praneet Opanasopit

Electrospun nanofibrous materials are widely used in medical applications such as tissue engineering scaffolds, wound dressing material and drug delivery carriers. For tissue engineering scaffolds, the structure of the nanofiber is similar to extracellular matrix (ECM) which promotes the cell growth and proliferation. In the present study, the aligned nanofiber mats of polyvinyl pyrrolidone (PVP) blended poly [Formula: see text]-caprolactone (PCL) was successfully generated using electrospinning technique. The morphology of PVP/PCL nanofiber mats were characterized by scanning electron microspore (SEM). The chemical and crystalline structure of PVP/PCL nanofiber mats were analyzed using Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffactometer (PXRD). The water contact angle of mats was investigated. Cell culture studies using normal human fibroblasts (NHF) were performed to assess cell morphology, cell alignment and cell proliferation. The results indicated that the fiber were in nanometer range. The PVP/PCL was well dispersed in nanofiber mats and was in amorphous form. The water contact angle of PVP/PCL nanofiber mats was lower than PCL nanofiber mats. The PVP/PCL nanofiber mats exhibited good biocompatibility with NHF cells. In summary, the PVP/PCL nanofiber mats had potential to be used in tissue engineering and regenerative medicine.


2012 ◽  
Vol 200 ◽  
pp. 190-193 ◽  
Author(s):  
Ruo Mei Wu ◽  
Shu Quan Liang ◽  
Hong Chen ◽  
An Qiang Pan ◽  
Hai Yun Jiang ◽  
...  

A novel and stable super-hydrophobic film was prepared by stearic acid (C18H36O2), which was chemically adsorbed onto the anodized aluminum surface. The maximum static water contact angle (WCA) of the super-hydrophobic surface was 157.5º ± 2.0º and the contact angle hysteresis was less than 3º. The superhydrophobic property is attributed to the micro-nanoporous surface morphology and stearic acid. The pore size on the surface of anodic aluminum oxide is an important factor for controlling the superhydrophobic adhesiveness. The superhydrophobic surface is a factor to reduce device-associated infection and can be used in metal packaging practice.


Sign in / Sign up

Export Citation Format

Share Document