Enhancement of mechanical and electromagnetic absorbing properties of carbon/glass hybrid composites with a three-dimensional quasi-isotropic braided structure

2019 ◽  
Vol 89 (23-24) ◽  
pp. 4896-4905 ◽  
Author(s):  
Wei Fan ◽  
Lili Xue ◽  
Tongxue Wei ◽  
Jingjing Dong ◽  
Juanzi Li ◽  
...  

Two carbon/glass hybrid composites with different reinforced structures were designed and their mechanical and electromagnetic absorbing properties (EMAPs) were investigated in this paper. It was found that the tensile, bending, and double-notch shear strength of the three-dimensional (3D) quasi-isotropic (QI)-braided composite were 4.50%, 9.64%, and 14.29% higher than those of the QI-laminated composite, respectively. This was because Z-binder yarns in the 3D QI-braided composite can lock all yarn sets together to bear external stress and inhibit crack propagation in interlamination. The EMAPs of the 3D QI-braided composites were larger than that of the QI-laminated composite in the entire Ku band. This was because the Z-directional glass fibers in the 3D QI-braided composite were beneficial for electromagnetic transmission. The uniform arrangement of five sets of yarns (+45°, –45°, 90°, 0°, and Z-yarns) resulted in the 3D QI-braided composites having better QI-EMAPs and QI mechanical properties in plane and outstanding interlayer performance than the traditional carbon fiber laminated composite.

2019 ◽  
Vol 28 (9) ◽  
pp. 1418-1437
Author(s):  
Yuanyuan Li ◽  
Zhijuan Pan ◽  
Bohong Gu ◽  
Baozhong Sun

This paper presents a multi-scale finite element model to calculate the stress field and analyze the punch shear failure of three-dimensional braided composite at high strain rates. The multi-scale model was established based on real braided structure taking the surface and corner braiding yarns into consideration. Constitutive material modeling and failure criterions were introduced into the model. Three braiding angles of 25°, 35°, and 45° were applied to reveal the relations between failure states and braided structure. The results showed that the punch shear failure states and stress distribution were greatly dependent on the strain rates and braiding angles. Nonuniform stress propagation resulted in shear bands and different formation paths were observed on the composite with different braiding angles. The ultimate failure of braided composite was determined by comprehensive action of compressive and tensile stress. In addition, the progressive damage of typical braiding yarns in different conditions was obtained from the modeling simulation. The three-dimensional braided composites with different braiding angles showed unique failure morphology. It was closely determined by the complex braided structures.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1395 ◽  
Author(s):  
Liwei Wu ◽  
Wei Wang ◽  
Qian Jiang ◽  
Chunjie Xiang ◽  
Ching-Wen Lou

The effects of braided architecture and co-braided hybrid structure on low-velocity response of carbon-aramid hybrid three-dimensional five-directional (3D5d) braided composites were experimentally investigated in this study. Low-velocity impact was conducted on two types of hybridization and one pure carbon fiber braided reinforced composites under three velocities. Damage morphologies after low-velocity impact were detected by microscopy and ultrasonic nondestructive testing. Interior damages of composites were highly dependent on yarn type and alignment. Impact damage tolerance was introduced to evaluate the ductility of hybrid composites. Maximum impact load and toughness changed with impact velocity and constituent materials of the composites. The composite with aramid fiber as axial yarn and carbon fiber as braiding yarn showed the best impact resistance due to the synergistic effect of both materials. Wavelet transform was applied in frequency and time domain analyses to reflect the failure mode and mechanism of hybrid 3D5d braided composites. Aramid fibers were used either as axial yarns or braiding yarns, aiding in the effective decrease in the level of initial damage. In particular, when used as axial yarns, aramid fibers effectively mitigate the level of damage during damage evolution.


2010 ◽  
Vol 136 ◽  
pp. 59-63 ◽  
Author(s):  
X.Y. Pei ◽  
Jia Lu Li

In this paper the fabricating technology of three dimensional (3D) integrated braided composite I beam is researched, including: braiding technology of 3D braided I beam preform, the orientation of fiber-tow in the I beam preform, the optimizing of process parameters of resin transfer molding (RTM) for 3D braided composite I beam, and the design of mould for consolidation of composite I beam. The quality of 3D braided composites is good analyzed by ultrasonic A-scan, void content calculation and microscope observation. The research result will provide a good way for designing and fabricating high performance 3D integrated braided composite components with irregular cross section.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1931
Author(s):  
Liwei Wu ◽  
Xiaojun Sun ◽  
Chunjie Xiang ◽  
Wei Wang ◽  
Fa Zhang ◽  
...  

Three-dimensional braided composite has a unique spatial network structure that exhibits the characteristics of high delamination resistance, damage tolerance, and shear strength. Considering the characteristics of braided structures, two types of high-performance materials, namely, aramid and carbon fibers, were used as reinforcements to prepare braided composites with different hybrid structures. In this study, the longitudinal and transverse shear properties of 3D braided hybrid composites were tested to investigate the influences of hybrid and structural effects. The damage characteristics of 3D braided hybrid composites under short beam shear loading underwent comprehensive morphological analysis via optical microscopy, water-logging ultrasonic scanning, and X-ray micro-computed tomography methods. It is shown that the shear toughness of hybrid braided composite has been improved at certain degrees compared with the pure carbon fiber composite under both transverse and longitudinal directions. The hybrid braided composites with aramid fiber as axial yarn and carbon fiber as braiding yarn exhibited the best shear toughness under transverse shear loading. Meanwhile, the composites with carbon fiber as axial yarn and aramid fiber as braiding yarn demonstrated the best shear toughness in the longitudinal direction. Due to the different distribution of axial and braiding yarns, the transverse shear property of hybrid braided structure excels over the longitudinal shear property. The failure modes of the hybrid braided composite under the two loading directions are considerably different. Under transverse loading, the primary failure mode of the composites is yarn fracture. Under longitudinal loading, the primary failure modes are resin fracture and fiber slip. The extensive interfacial effects and the good deformation capability of the hybrid braided composites can effectively prevent the longitudinal development of internal cracks in the pattern, improving the shear properties of braided composites.


2020 ◽  
Vol 54 (13) ◽  
pp. 1761-1781
Author(s):  
SA Pottigar ◽  
B Santhosh ◽  
RG Nair ◽  
P Punith ◽  
PJ Guruprasad ◽  
...  

Three-dimensional braided composites with zero, negative and isotropic coefficient of thermal expansion are presented based on an analytical homogenization technique. The configuration of the braided composites is worked out considering the exact jamming condition leading to higher fiber volume fraction. A total of four configurations of three-dimensional-braided composite representative unit cells were analyzed. Among these, two arrangements are 4-axes and the other two are 5-axes. Special emphasis is given on the detailed description of the representative unit cells. Analysis reveals that a three-dimensional-braided composite configuration with thermoelastic isotropic properties having same coefficient of thermal expansion along x-, y-, and z-axes is achievable. As a special case, the homogenization model is used to predict, for the first time, a configuration of braided architecture and material leading to zero coefficient of thermal expansion along x-, y- and z-directions.


2007 ◽  
Vol 353-358 ◽  
pp. 1948-1951 ◽  
Author(s):  
Xi Tao Zheng ◽  
Qin Sun ◽  
Ying Nan Guo ◽  
Ya Nan Chai

Load response and failure modes of three-dimensional (3-d) four-directional braided composite lugs were studied analytically and experimentally. The objective of the study was to get information on the stiffness, strength and failure mode of the lug, as well as on the applicability of the analysis method used to predict lug load response and failure. The test lugs were manufactured with the RTM (Resin Transfer Molding) technique. The test specimens were loaded parallel to the lug centerline. Two types of specimens were tested to failure. Three of them were instrumented with 18 strain gages in each type of lug. There are three basic failure modes in braided composite joints: net-tension, shear-out, and bearing. Net-tension failure is associated with matrix and fiber tension failure due to stress concentrations. Shear-out and bearing failures result primarily from the shear and compression failures of fiber and matrix. The analyses were performed using finite element method. Shell elements were used. A steel pin was modeled to apply the loading. The loading was applied with a constant force distribution through the center of the pin. A contact was defined between the pin and the surrounding lug surface. The measured strains showed fairly good correlation with the analysis results. The strain response was almost linear. It can be concluded that with correct material properties the FE approach used in the analyses can provide a reasonable estimate for the load response and failure of 3-d braided composite lugs


2011 ◽  
Vol 48-49 ◽  
pp. 1389-1394
Author(s):  
Yi Li ◽  
Zhen Kai Wan ◽  
Jia Lu Li

This paper describes two methods of Fiber Bragg Grating (FBG) embedded in the three-dimensional (3D) braded composite materials and acoustic emission health monitor for 3D braided composite materials condition. The paper mainly analyses the relations of FBG change and the inner straining under the stretching on materials. It is provided that the way of signal collection and processing. The experimental results proved that FBG sensors have exceptional sense characteristic. The braided angle of composites has a little influence on FBG signal. FBG embedded in the 3D braided composite materials has not more effect mechanical property of materials. According to two health monitoring methods and the particularity of 3D braided composites, the health monitoring method based on FBG much more applies to dynamic monitoring on 3D composites special field. This research provides basis for the study and application of advanced intelligent composites.


2019 ◽  
Vol 89 (19-20) ◽  
pp. 4306-4322 ◽  
Author(s):  
Zhipeng Wang ◽  
Guoli Zhang ◽  
Youxin Zhu ◽  
Liqing Zhang ◽  
Xiaoping Shi ◽  
...  

Multilayer interlock three-dimensional (3D) tubular braided composites have been widely used in propeller blades, high pressure pipelines, rocket nose cones and engine nozzles owing to prominent interlaminar shear properties, reliable damage tolerance and outstanding torsion performance. The prediction of the mechanical properties and the design of the fabric structures for the 3D braided composites are dependent on the trajectory distribution of strands and the geometrical model of the braided structure. This paper aims to build theoretical models for the braiding strand trajectories and presents a creative method to establish the parametric geometrical models for the multilayer interlock 3D tubular braided structures. Firstly, mathematical models of braiding strand trajectories are derived based on the analysis for the characteristics of carrier paths, the interlacing and interlocking of braided structures and the motion of braiding strands. The mathematical models are then developed to establish parametric expressions for multilayer interlock 3D tubular braided structures by the advanced development of UG NX®. In addition, the models of corresponding braiding strand trajectories and braiding structures can be obtained automatically in the simulation environment with the modification of design parameters. Finally, the established models are compared with the carbon fiber braided specimen. The results show that the innovative parametric geometric models of the multilayer interlock 3D tubular braided structures accurately describe the key characteristics of the preform.


2011 ◽  
Vol 298 ◽  
pp. 68-72 ◽  
Author(s):  
Ming Wei Ding ◽  
Zhen Kai Wan ◽  
Yong Xin Ma

In this work, the application status and significance of Fiber Bragg Gratings(FBGs) and Three-dimensional (3-D) braided composites were briefly introduced, so were the fundamental structure of 3-D braided composites and the sensing mechanism of FBGs in them. Combined with the characteristics of 3-D braiding technology, this paper presents a primary theoretical solution for synchronously monitoring temperature and strain inside Three-dimensional (3-D) braided composites, and further analysis were made about it. It was shown by experiment that the application of FBGs in the structure health monitoring in 3-D braided composites has great potential.


2017 ◽  
Vol 24 (5) ◽  
pp. 791-798 ◽  
Author(s):  
Jian-Min Guo ◽  
Li-Ying Gong ◽  
Yan Liu

AbstractIn this paper, we introduce an embedded method of carbon nanotube threads (CNTs) in three-dimensional (3-D) braided composite material preform. We investigate the strain sensing properties of CNTs embedded into 3-D braided composites using three-point bend test under different loads. The resistance change rate properties of CNTs in composites under tensile and compressive loading are analyzed in detail. Experimental results show that in the three-point bending process, the resistance of CNTs exponentially increases with the increase of strain until the specimen loading to fracture. Moreover, the residual resistance of CNTs has been observed after unloading. Our experiments have shown that structure health status of 3-D braided composites can be sensed and monitored in real-time using CNTs sensor under bending load. This study provides an experimental basis to lay the foundation for the structural health monitoring system construction of 3-D braided composites.


Sign in / Sign up

Export Citation Format

Share Document