Structural design and characterization of highly elastic woven fabric containing helical auxetic yarns

2019 ◽  
Vol 90 (7-8) ◽  
pp. 809-823
Author(s):  
Junli Chen ◽  
Zhaoqun Du ◽  
Tianyuan Li

Auxetic textiles have been the focus of much attention due to their great promise for advanced protective clothing, flexible energy harvest devices, and functional textiles. Herein, plain fabric, basket fabric, and a derivative weave with the warp and weft yarns arrangement in a series of zigzags were prepared by incorporating different initial wrap density helical auxetic yarns in the weft direction using a commercial semi-automatic loom. The derivative weave using HAYs with a 150 m−1 initial wrap density as the weft yarn not only possesses superior auxetic behavior but also has good performance in strength and elasticity—essential properties useful for textile daily application. This fabric exhibits a high auxetic effect ( ν = −0.585), low elastic deformation (total deformation of 8.4% at 20% strain), excellent flexibility, and high break load. Moreover, by taking account of the key geometric parameters, a systematic discussion of the fabrics has been completed to evaluate the effect on the auxetic behavior; this clarified that changing the fabric structure and initial wrap density of a HAY is an effective strategy to tailor auxetic behavior without compromising the intrinsic properties of components. On the basis of our research, auxetic textiles can be considered a promising candidate for next-generation smart textiles and advanced functional textiles.

2018 ◽  
Vol 36 (3) ◽  
pp. 199-214 ◽  
Author(s):  
Mumtaz Ali ◽  
Muhammad Zeeshan ◽  
Sheraz Ahmed ◽  
Bilal Qadir ◽  
Yasir Nawab ◽  
...  

Knitted auxetic fabrics (AF) are in common practice but their stability and thickness are major problems in commercial applications. Therefore, a simple method of developing woven AF is proposed here. Differential shrinking property of different weaves is utilized to visualize auxetic honey comb geometry in fabric structure. Based on this fabric structure, auxeticity is induced in 2-D-woven fabric. AF is developed using conventional nonauxetic materials (i.e., cotton in warp and elastane [Lycra] yarn in the weft). Auxetic nature and auxetic structure in the fabric were characterized by microscope. Comfort properties (air permeability, thermal resistance, stiffness, and wicking) of AF were compared with conventional nonauxetic fabrics (NAF). Piezoresistive nature of conductive AF and NAF is also compared. AF showed superior comfort properties and higher sensitivity as compared to conventional NAF. Based on results, AF can be considered better replacement of conventional NAF in wearable and medical applications.


2019 ◽  
Vol 90 (13-14) ◽  
pp. 1477-1494
Author(s):  
Magdi El Messiry ◽  
Shaimaa El-Tarfawy

Cutting processes using blades have found applications in many industries; for example, in garments, fiber–polymer composites, and high-performance fabric forming. In recent decades, the process of cutting the material using a robotic-controlled blade has raised concern about the value of the pressure and the cut force required for a certain type of woven fabric and the estimation of its value before the pressing and cutting process. A simple theoretical relation was established based on the fabric structure and yarn shear stress. The model formulation and experimental results to describe the basic theory of blade cutting fracture for woven fabric of different designs was derived. In this work, the experimental investigation of the effect of the fabric specifications, normal load, and the cutting speed on the cutting force was carried out, which indicates that the value of the specific cutting resistance of the fabric was found to be highly correlated with the fabric structure, warp and weft yarn count, Young’s modulus of the fabric, and fractional cover factors ratio ζ.


2018 ◽  
Vol 69 (04) ◽  
pp. 322-327 ◽  
Author(s):  
ÖZDEMİR HAKAN

Comfort is one of the most important aspects of clothing. Air permeability, one of the comfort charectaristics of fabrics, depends mainly on the fabric structure, which can be described by weave and yarn density. In this study, 16 worsted woven fabric samples were produced for winter clothing using eight frequently implemented weave types together with one warp density (28 ends/cm) and two weft densities (25 and 28 picks/cm). Additonally, semi-dull finish was applied on raw fabrics. Results revealed the effect of weave, weft yarn density and finishing process on air permeability of woven fabrics. 2/2 twill woven fabric, whose porosity is the lowest, have the lowest air permeability properties, therefore it is more convenient for winter clothing. It is observed that in all weave types, an increase at weft setting caused to decrease in air permeability and porosity values. Finishing process also leads to decreasesin porosity thereby to decrease air permeability property


2010 ◽  
Vol 22 (2/3) ◽  
pp. 79-87 ◽  
Author(s):  
Pranut Potiyaraj ◽  
Chutipak Subhakalin ◽  
Benchaphon Sawangharsub ◽  
Werasak Udomkichdecha

PurposeThe purpose of this paper is to develop a computerized program that can recognize woven fabric structures and simultaneously use the obtained data to 3D re‐visualize the corresponding woven fabric structures.Design/methodology/approachA 2D bitmap image of woven fabric was initially acquired using an ordinary desktop flatbed scanner. Through several image‐processing and analysis techniques as well as recognition algorithms, the weave pattern was then identified and stored in a digital format. The weave pattern data were then used to construct warp and weft yarn paths based on Peirce's geometrical model.FindingsBy combining relevant weave parameters, including yarn sizes, warp and weft densities, yarn colours as well as cross‐sectional shapes, a 3D image of yarns assembled together as a woven fabric structure is produced and shown on a screen through the virtual reality modelling language browser.Originality/valueWoven fabric structures can now be recognised and simultaneously use the obtained data to 3D re‐visualize the corresponding woven fabric structures.


2019 ◽  
Vol 19 (3) ◽  
pp. 236-242
Author(s):  
Fuwang Guan ◽  
Zhaole Li ◽  
Zhuli Yang ◽  
Chuyang Zhang ◽  
Yiping Qiu

Abstract In this paper, a novel kind of electromagnetic (EM) functional textiles is proposed, which show high-pass characteristics as they interact with EM waves. The periodically conductive woven fabric was designed, fabricated, and measured. Specifically, by means of unit cell model building and EM simulation, the theoretical S21 (transmission coefficient) and S11 (reflection coefficient) curves were obtained. A concrete sample was fabricated through weaving process, and its transmission characteristics were measured in the microwave anechoic chamber. The measured and simulated results were highly consistent, demonstrating the validity of design process. Compared with the aluminum foil paper sample, the S21 values of fabricated sample were a little smaller, and the reason could be attributed to yarn crimp and surface roughness. The EM characteristics of fabricated sample under two different polarization modes were slightly different, which was due to the beating-up tension of weaving process. The work could offer new research ideas, and the related products have potential advantages over rigid plates on the account of textile characteristics.


Blood ◽  
2019 ◽  
Vol 133 (13) ◽  
pp. 1436-1445 ◽  
Author(s):  
Jyoti Nangalia ◽  
Emily Mitchell ◽  
Anthony R. Green

Abstract Interrogation of hematopoietic tissue at the clonal level has a rich history spanning over 50 years, and has provided critical insights into both normal and malignant hematopoiesis. Characterization of chromosomes identified some of the first genetic links to cancer with the discovery of chromosomal translocations in association with many hematological neoplasms. The unique accessibility of hematopoietic tissue and the ability to clonally expand hematopoietic progenitors in vitro has provided fundamental insights into the cellular hierarchy of normal hematopoiesis, as well as the functional impact of driver mutations in disease. Transplantation assays in murine models have enabled cellular assessment of the functional consequences of somatic mutations in vivo. Most recently, next-generation sequencing–based assays have shown great promise in allowing multi-“omic” characterization of single cells. Here, we review how clonal approaches have advanced our understanding of disease development, focusing on the acquisition of somatic mutations, clonal selection, driver mutation cooperation, and tumor evolution.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 879
Author(s):  
Kevin Cheng ◽  
Andrew Lin ◽  
Jeremy Yuvaraj ◽  
Stephen J. Nicholls ◽  
Dennis T.L. Wong

Radiomics, via the extraction of quantitative information from conventional radiologic images, can identify imperceptible imaging biomarkers that can advance the characterization of coronary plaques and the surrounding adipose tissue. Such an approach can unravel the underlying pathophysiology of atherosclerosis which has the potential to aid diagnostic, prognostic and, therapeutic decision making. Several studies have demonstrated that radiomic analysis can characterize coronary atherosclerotic plaques with a level of accuracy comparable, if not superior, to current conventional qualitative and quantitative image analysis. While there are many milestones still to be reached before radiomics can be integrated into current clinical practice, such techniques hold great promise for improving the imaging phenotyping of coronary artery disease.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
A. A. Salama ◽  
A. S. El-Deeb ◽  
I. M. El-shahat

This research aims to innovate a new fabric structure, which could be used as a bed cover based on double honeycomb fabric with self-stitching. The honeycomb air pockets were aimed at facing each other to form closed small air chambers which work to sequester the air. The double fabric increases fabric thickness. Thus, the opportunity to improve thermal comfort could be achieved. A number of samples were produced with different densities and counts of weft yarn. Thermal insulation and water vapour permeability were measured and compared with bed covers produced from reversible weft backed structure. Geometrical properties, abrasion resistance, and air permeability were also measured. The results showed that the innovated structure had higher values of thermal insulation than reversible weft backed structure at certain weft counts and densities.


Author(s):  
Michael C. Emmons ◽  
Sunny Karnani ◽  
K. P. Mohanchandra ◽  
Gregory P. Carman ◽  
Stefano Trono ◽  
...  

This study investigates the influence of lay-up and load direction on embedded optical fiber Bragg gratings (FBGs) used as strain sensors. FBGs have shown great promise for application to structural health monitoring with advantages of small size and cylindrical geometry readily allowing for embedment within fiber reinforced composites. Characterization of the embedded FBGs is necessary to develop a rugged and reliable strain sensor. This paper specifically explores the effects of loading direction on the FBG strain outputs. A well behaved baseline case is established with results for gratings loaded parallel to the optical fiber direction while embedded parallel to the adjacent structural fibers in a quasi-isotropic composite. Results and analysis are also presented for a case involving a composite fabricated with the optical and structural fibers parallel to each other but perpendicular to the loading direction. Extremely good results are obtained relating FBG strain measurements with that of surface mounted resistance strain gauges.


Sign in / Sign up

Export Citation Format

Share Document