Construction and analysis of a three-channel numerical control ring-spinning system for segment colored yarn

2021 ◽  
pp. 004051752110205
Author(s):  
Xianqiang Sun ◽  
Peng Cui ◽  
Yuan Xue

At present, there have been a significant number of studies of segment colored yarn, and the majority of these studies have made considerable progress, which has made the types and styles of segment colored yarn more abundant. However, the problem that exists in the segment colored yarn is its relatively few kinds of color, which greatly limits its flexibility and diversity in commercial applications. To address the above problems, a multi-channel computer numerical control (CNC) ring-spinning machine was developed, and a digital spinning mechanism with online regulation of the forming linear density and blending ratio was constructed through the developed three-channel drafting mechanism and its driving and controlling system; the spinning mechanism of segment colored yarn using the time-varying three-channel drafting ratio to the spinning time-varying three-colored fiber blending ratio was established by implementing a coupling algorithm for co-drafting of multi-channel roving; the forming process and algorithm of segment colored yarn, which is used to solve the blending ratio of three colored fibers and the drafting ratio of three-channel roving based on segment color, was constructed through the digital color mixing model and the design of segment color of yarn. According to the above mechanism, three rovings with two color combinations of cyan, magenta, yellow and cyan, magenta, black were used to design and spin segment colored yarns with three, five and seven colors, respectively. By testing and analyzing the linear density, twist, unevenness, surface hairiness and tensile properties of the segment colored yarn, it is proved that the timing control of the three-channel drafting ratio based on CNC ring spinning can achieve the timing control of the blending ratio of the three colored fibers, which is beneficial to the spinning of segment colored yarn with color segment distribution.

Author(s):  
Hossein Ghorbani-Menghari ◽  
Mehrdad Azadipour ◽  
Mehran Ghasempour-Mouziraji ◽  
Young Hoon Moon ◽  
Ji Hoon Kim

The deformation machining process (DMP) involves machining and incremental forming of thin structures. It can be applied for manufacturing products such as curved-surface blades without using 5-axis computerised numerical control machines. This work presents the effect of tool diameter and forming temperature on spring-back and dimensional accuracy of a simple fabricated part. The results of the first phase of the study are utilised to design the fabrication process of a curved surface blade. A feature-based algorithm is used to design the tool path for the forming process. The dimensional accuracy of the final product is improved through warm forming, two-point incremental forming, and extension of the bending zone to the outside of the product edges. The results show that DMP can be used to fabricate complex curved-surface workpieces with acceptable dimensional accuracy.


Author(s):  
Qiyang Zuo ◽  
Kai He ◽  
Xiaobing Dang ◽  
Wei Feng ◽  
Ruxu Du

Bending complex curved steel plates for constructing ship hull has long been a challenge in shipbuilding industry. This paper presents a novel incremental bending process to obtain complicated curved steel plates by a series of sequential and layered punches. Taking advantage of this process, the blank plate that is fixed and held by a flexible supporting system can incrementally be bent into the target shape by a press tool along a planned tool path step by step and layer by layer. Acting as a “lower die,” the flexible supporting system can provide flexible and multifunctional supports for the work piece during the forming process, whose four general motion modes are demonstrated in this paper. Meanwhile, the procedures of tool path planning and forming layering are also explained in detail. In addition, aiming at different motion modes of the flexible supporting system, two springback compensation methods are given. Furthermore, according to the forming principle presented in this paper, an original incremental prototype equipment was designed and manufactured, which is mainly composed of a three-axis computer numerical control (CNC) machine, a flexible supporting system, and a three-dimensional (3D) scanning feedback system. A series of forming experiments focusing on a gradual curvature shape were carried out using this prototype to investigate the feasibility and validity of this forming process.


2017 ◽  
Vol 899 ◽  
pp. 272-277
Author(s):  
Hugo Dutra Gomes ◽  
Maria Carolina dos Santos Freitas ◽  
Luciano Pessanha Moreira ◽  
Flavia de Paula Vitoretti ◽  
Jose Adilson de Castro

The present study is primarily engaged in the implementation of the incremental stamping process in a computerized numeric control This paper presents two different approaches to this forming process, an experimental and other numerical. Experimental used by the computer numerical control to perform the printing process and performs numerical simulations of the process using the finite element method. Some parameters are analyzed in both approaches, such as product geometry effects, tool geometry, tool speed, tool path, contact conditions and mechanical properties of the materials.


2018 ◽  
Vol 53 (8) ◽  
pp. 584-601 ◽  
Author(s):  
Sara S Miranda ◽  
Manuel R Barbosa ◽  
Abel D Santos ◽  
J Bessa Pacheco ◽  
Rui L Amaral

Press brake air bending, a process of obtaining products by sheet metal forming, can be considered at first sight a simple geometric problem. However the accuracy of the obtained geometries involves the combination of multiple parameters directly associated with the tools and the processing parameters, as well as with the sheet metal materials and dimensions. The main topic herein presented deals with the capability of predicting the punch displacement process parameter that enables the product to be accurately shaped to a desired bending angle, in press brake air bending. In our approach, it is considered separately the forming process and the elastic recovery (i.e. the springback effect). Current solutions in press brake numerical control (computer numerical control) are normally configured by analytical models developed from geometrical analysis and including correcting factors. In our approach, it is proposed to combine the use of a learning tool, artificial neural networks, with a simulation and data generation tool (finite element analysis). This combination enables modeling the complex nonlinear behavior of the forming process and springback effect, including the validation of results obtained. A developed model taking into account different process parameters and tool geometries allow extending the range of applications with practical interest in industry. The final solution is compatible with its incorporation in a computer numerical control press brake controller. It was concluded that, using this methodology, it is possible to predict efficient and accurate final geometries after bending, being also a step forward to a “first time right” solution. In addition, the developed models, methodologies and obtained results were validated by comparison with experimental tests.


Author(s):  
Jinfeng Wang ◽  
Shoulin Yin ◽  
Xueying Wang

<p>In this paper, we express arc furnace electrode regulator system as a time-variant nonlinear-linear-nonlinear model. On this basis, we propose an online identification method based on nonlinear-linear-nonlinear model system. This new scheme solves the problem of model variation and prediction precision decline causing by time-varying of arc characteristic. In order to dispose the difficulty of parameters separation in the online identification process, this new method adopts the mind of update the parameters of linear parts and nonlinear parts respectively. It realizes the parameters separation of system effectively. Simulation results show that this method can track the changes of arc characteristics effectively. That it achieves the aim of real-time monitoring and controlling system parameters.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Song Wang

Stator resistance and inductances ind-axis andq-axis of permanent magnet synchronous motors (PMSMs) are important parameters. Acquiring these accurate parameters is usually the fundamental part in driving and controlling system design, to guarantee the performance of driver and controller. In this paper, we adopt a novel windowed least algorithm (WLS) to estimate the parameters with fixed value or the parameter with time varying characteristic. The simulation results indicate that the WLS algorithm has a better performance in fixed parameters estimation and parameters with time varying characteristic identification than the recursive least square (RLS) and extended Kalman filter (EKF). It is suitable for engineering realization in embedded system due to its rapidity, less system resource possession, less computation, and flexibility to adjust the window size according to the practical applications.


2006 ◽  
Vol 116-117 ◽  
pp. 441-444 ◽  
Author(s):  
Kenji Miwa ◽  
Rudi S. Rachmat ◽  
Takuya Tamura

We have developed new type semi-solid injection process, that is, runner-less injection process. In order to investigate the effects of solid fraction on microstructure and casting defects of AZ91D in new type semi solid injection process, semi-solid forming testing machine which has the same system as a runner-less injection machine has been made on an experimental basis. Its temperature controlling system has been established to obtain the homogeneous solid-liquid coexisted state in its injection cylinder. AZ91D billets are injected into a permanent mold by this machine in the semi-solid state. A shearing in the part of nozzle of injection cylinder is the most important to reveal thixotropic property of alloy slurry in semi solid forming process by injection machine. So it needs controlling of solid fraction to affect thixotropic property. In order to decrease casting defects and hold homogeneous structure, solid fraction more over 50% is needed. But when the solid fraction increases more than 50%, primary solid particles grow coarser, and then controlling method is required to suppress coarsening. In the case of less than 50% of solid fraction, liquid part preferentially fills inside the permanent mold and alloy slurry continue to fill the mold behind alloy liquid. Then large casting defects form at the boundary of both flows.


Author(s):  
Mehdi Vahdati ◽  
Ramezanali Mahdavinejad ◽  
Saeid Amini

The mechanism of incremental sheet metal forming is based on plastic and localized deformation of sheet metal. The sheet metal is formed using a hemispherical-head tool in accordance with the path programmed into the computer numerical control milling machine controller. Experimental and numerical analyses have been performed previously on the application of ultrasonic vibration to various metal forming processes. However, thus far, the effects of ultrasonic vibration on incremental sheet metal forming have not been investigated. This article presents the process of design, analysis, manufacture and testing of a vibrating forming tool for the development of ultrasonic vibration–assisted incremental sheet metal forming. The results obtained from modal analysis and natural frequency measurement of the vibrating tool confirmed the emergence of a longitudinal vibration mode and resonance phenomenon in the forming tool. Then, the effect of ultrasonic vibration on incremental sheet metal forming was studied. The obtained experimental results from the straight groove test on Al 1050-O sheet metals showed that ultrasonic vibration led to decrease in the following parameters as compared with conventional incremental sheet metal forming: applied force on forming tool axis, spring-back and surface roughness of formed sample.


2014 ◽  
Vol 1006-1007 ◽  
pp. 732-735
Author(s):  
Zhong Bo Du

In this paper, ARM processor and real-time embedded operating system will be used in controlling system of sewage disposal, compared with the traditional controlling system of sewage disposal online PLC, not only improved the timeliness, reliability and scalability, but also enhanced the system speed. While, in order to control the low-cost, the Fuzzy-PID compound control algorithm used to control the amount of purifying agent, the algorithm can be adapt to the nonlinear and time-varying and improve accuracy. In this paper, the application of Matlab software to carry on the simulation experiment, proved the feasibility and effectiveness of the algorithm at last.


2013 ◽  
Vol 395-396 ◽  
pp. 1222-1226
Author(s):  
Sha Xu ◽  
En Qi Wu ◽  
Guo Liu

Virtual manufacturing technology is used to simulate the computer numerical control (CNC) lathe, virtual prototype of the CNC lathe is established. In the simulating process, the explain module and the check module of the CNC code are analyzed, the differential radial dynamic scaling technology is used to simulate the workpiece forming process, then the motion simulation of the virtual CNC lathe system is realized, and the system is drived by the CNC code. The machining process and workpiece forming process can be observed directly in the virtual environment, so the correctness of the CNC code can be checked in advance to avoid the interference, collisions or other problems in the actual lathe processing and reduce the the scrap rate of the workpiece and tool in the actual machining process.


Sign in / Sign up

Export Citation Format

Share Document