A modified resistance to compression (RtC) test for evaluation of natural fiber softness

2022 ◽  
pp. 004051752110694
Author(s):  
Hao Yu ◽  
Christopher Hurren ◽  
Xin Liu ◽  
Stuart Gordon ◽  
Xungai Wang

Comfort is a key feature of any clothing that relates significantly to softness of the fiber, yarn and fabric from which is it constructed. A known softness assessment method for fibers is the resistance to compression test. This traditional test only provides a single force value for the resistance of a loose fiber sample using a fixed mass under compression. In this research, a modified resistance to compression test was introduced to show the effects of repeated compression, providing more information about the softness and resilience of selected fibers. Three different natural fiber types, including wool, cotton and alpaca were compared using this new approach. The results showed compression profiles were quite different for different fiber types as well as for the same fibers with different diameters. While the diameters of the wool and alpaca samples were similar (18.5 μm), the modified resistance to compression values were significantly higher for wool (with a peak value at 9.5 kPa compared to 2.1 kPa for alpaca). Cotton was different from wool and alpaca but showed a similar modified resistance to compression value (10.4 kPa) to wool. During cycles of compression, modified resistance to compression peak values decreased slightly and then tended to be constant. Even though the structures of wool, cotton and alpaca were quite different, there was no significant difference in the magnitude of decline in modified resistance to compression peak values. This means that the modified resistance to compression test is able to provide additional information on the resilience characteristics of different natural fibers, and can reveal the resistance behavior of fiber samples during cyclic compression.

2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Celal Çakıroğlu ◽  
Gebrail Bekdaş

In the recent years natural fiber reinforced composites are increasingly receiving attention from the researchers and engineers due to their mechanical properties comparable to the conventional synthetic fibers and due to their ease of preparation, low cost and density, eco-friendliness and bio-degradability. Natural fibers such as kenaf or flux are being considered as a viable replacement for glass, aramid or carbon. Extensive experimental studies have been carried out to determine the mechanical behavior of different natural fiber types such as the elastic modulus, tensile strength, flexural strength and the Poisson’s ratio. This paper presents a review of the various experimental studies in the field of fiber reinforced composites while summarizing the research outcome about the elastic properties of the major types of natural fiber reinforced composites. Furthermore, the performance of a kenaf reinforced composite plate is demonstrated using finite element analysis and results are compared to a glass fiber reinforced laminated composite plate.


2018 ◽  
Vol 89 (5) ◽  
pp. 739-747 ◽  
Author(s):  
Geoffrey RS Naylor

In non-stationary wear conditions, characterized by intermittent pulses of moderate or heavy sweating, a garment with a good moisture buffering action can improve comfort. This is consistent with the common consumer belief that clothing manufactured from hygroscopic natural fibers (e.g., wool or cotton) provides better breathability. The current work describes a new approach for measuring dynamic moisture buffering potential using the sweating guarded hotplate instrument in a novel mode of operation. A fabric test sample is placed on the hotplate following the normal procedure for dry mode testing but with the relative humidity of the surrounding environment set to a low value (45%). After equilibration, the relative humidity is rapidly increased to a high value (85%). In the case of hygroscopic samples, a transient reduction in the heat required to maintain the hotplate at its fixed temperature is observed. It is demonstrated that the area of this transient peak is a measure of the water vapor absorbed during this transition, that is, the moisture buffering potential of the test specimen. A key to this new approach is that the heat of sorption per gram of water vapor absorbed is approximately the same for a wide range of natural and synthetic fibers commonly used in clothing. Using matched knitted fabrics manufactured from wool, cotton or polyester, the technique detected the heat released from light weight fabrics and the performance of the different fiber types is clearly distinguished.


Author(s):  
Asish C. Nag ◽  
Lee D. Peachey

Cat extraocular muscles consist of two regions: orbital, and global. The orbital region contains predominantly small diameter fibers, while the global region contains a variety of fibers of different diameters. The differences in ultrastructural features among these muscle fibers indicate that the extraocular muscles of cats contain at least five structurally distinguishable types of fibers.Superior rectus muscles were studied by light and electron microscopy, mapping the distribution of each fiber type with its distinctive features. A mixture of 4% paraformaldehyde and 4% glutaraldehyde was perfused through the carotid arteries of anesthetized adult cats and applied locally to exposed superior rectus muscles during the perfusion.


2019 ◽  
Vol 12 (1) ◽  
pp. 4-76 ◽  
Author(s):  
Krittirash Yorseng ◽  
Mavinkere R. Sanjay ◽  
Jiratti Tengsuthiwat ◽  
Harikrishnan Pulikkalparambil ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Background: This era has seen outstanding achievements in materials science through the advances in natural fiber-based composites. The new environmentally friendly and sustainability concerns have imposed the chemists, biologists, researchers, engineers, and scientists to discover the engineering and structural applications of natural fiber reinforced composites. Objective: To present a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials. Methods: The patent data have been taken from the external links of US patents such as IFI CLAIMS Patent Services, USPTO, USPTO Assignment, Espacenet, Global Dossier, and Discuss. Results: The present world scenario demands the usage of natural fibers from agricultural and forest byproducts as a reinforcement material for fiber reinforced composites. Natural fibers can be easily extracted from plants and animals. Recently natural fiber in nanoscale is preferred over micro and macro scale fibers due to its superior thermo-mechanical properties. However, the choice of macro, micro, and nanofibers depends on their applications. Conclusion: This document presents a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taslima Ahmed Tamanna ◽  
Shah Alimuzzaman Belal ◽  
Mohammad Abul Hasan Shibly ◽  
Ayub Nabi Khan

AbstractThis study deals with the determination of new natural fibers extracted from the Corypha taliera fruit (CTF) and its characteristics were reported for the potential alternative of harmful synthetic fiber. The physical, chemical, mechanical, thermal, and morphological characteristics were investigated for CTF fibers. X-ray diffraction and chemical composition characterization ensured a higher amount of cellulose (55.1 wt%) content and crystallinity (62.5%) in the CTF fiber. The FTIR analysis ensured the different functional groups of cellulose, hemicellulose, and lignin present in the fiber. The Scherrer’s equation was used to determine crystallite size 1.45 nm. The mean diameter, specific density, and linear density of the CTF fiber were found (average) 131 μm, 0.86 g/cc, and 43 Tex, respectively. The maximum tensile strength was obtained 53.55 MPa for GL 20 mm and Young’s modulus 572.21 MPa for GL 30 mm. The required energy at break was recorded during the tensile strength experiment from the tensile strength tester and the average values for GL 20 mm and GL 30 mm are 0.05381 J and 0.08968 J, respectively. The thermal analysis ensured the thermal sustainability of CTF fiber up to 230 °C. Entirely the aforementioned outcomes ensured that the new CTF fiber is the expected reinforcement to the fiber-reinforced composite materials.


Author(s):  
Yuko Komuro ◽  
Yuji Ohta

Conventionally, the strength of toe plantar flexion (STPF) is measured in a seated position, in which not only the target toe joints but also the knee and particularly ankle joints, are usually restrained. We have developed an approach for the measurement of STPF which does not involve restraint and considers the interactions of adjacent joints of the lower extremities. This study aimed to evaluate this new approach and comparing with the seated approach. A thin, light-weight, rigid plate was attached to the sole of the foot in order to immobilize the toe area. Participants were 13 healthy young women (mean age: 24 ± 4 years). For measurement of STPF with the new approach, participants were instructed to stand, raise the device-wearing leg slightly, plantar flex the ankle, and push the sensor sheet with the toes to exert STPF. The sensor sheet of the F-scan II system was inserted between the foot sole and the plate. For measurement with the seated approach, participants were instructed to sit and push the sensor with the toes. They were required to maintain the hip, knee, and ankle joints at 90°. The mean values of maximum STPF of the 13 participants obtained with each approach were compared. There was no significant difference in mean value of maximum STPF when the two approaches were compared (new: 59 ± 23 N, seated: 47 ± 33 N). The coefficient of variation of maximum STPF was smaller for data obtained with the new approach (new: 39%, seated: 70%). Our simple approach enables measurement of STPF without the need for the restraints that are required for the conventional seated approach. These results suggest that the new approach is a valid method for measurement of STPF.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2220
Author(s):  
Zaida Ortega ◽  
Francisco Romero ◽  
Rubén Paz ◽  
Luis Suárez ◽  
Antonio Nizardo Benítez ◽  
...  

This paper compares the mechanical properties of different natural fiber composites produced by rotational molding as a way of waste valorization from campaigns to control invasive plant species in Macaronesia. Rotomolded parts produced with polymeric matrices (polyethylene) and filled with up to 20% by weight of cellulosic fibers obtained from Arundo donax L., Pennisetum setaceum, and Ricinus communis plants were characterized in terms of tensile, flexural, and impact strength. It was found that the sieving of natural fibers allowed for their introduction in higher loadings, from 10 (for un-sieved material) to 20%; fiber size greatly affected the mechanical properties of the final parts, although some combinations were proven not to reduce the mechanical properties of the neat resin. This study is a first approach to the valorization of residues obtained from periodic campaigns of the control of invasive species performed by public authorities, usually at the local level. It is important to highlight that the main objective of this research did not focus on economically profitable activity; instead, it was focused on the reduction of wastes to be disposed from ecosystem maintenance actions and the investment of potential income into preservation policies.


2020 ◽  
Vol 58 (10) ◽  
pp. 1663-1672 ◽  
Author(s):  
Andrea Padoan ◽  
Aldo Clerico ◽  
Martina Zaninotto ◽  
Tommaso Trenti ◽  
Renato Tozzoli ◽  
...  

AbstractBackgroundThe comparability of thyroid-stimulating hormone (TSH) results cannot be easily obtained using SI-traceable reference measurement procedures (RPMs) or reference materials, whilst harmonization is more feasible. The aim of this study was to identify and validate a new approach for the harmonization of TSH results.MethodsPercentile normalization was applied to 125,419 TSH results, obtained from seven laboratories using three immunoassays (Access 3rd IS Thyrotropin, Beckman Coulter Diagnostics; Architect System, Abbott Diagnostics and Elecsys, Roche Diagnostics). Recalibration equations (RCAL) were derived by robust regressions using bootstrapped distribution. Two datasets, the first of 119 EQAs, the second of 610, 638 and 639 results from Access, Architect and Elecsys TSH results, respectively, were used to validate RCAL. A dataset of 142,821 TSH values was used to derive reference intervals (RIs) after applying RCAL.ResultsAccess, Abbott and Elecsys TSH distributions were significantly different (p < 0.001). RCAL intercepts and slopes were −0.003 and 0.984 for Access, 0.032 and 1.041 for Architect, −0.031 and 1.003 for Elecsys, respectively. Validation using EQAs showed that before and after RCAL, the coefficients of variation (CVs) or among-assay results decreased from 10.72% to 8.16%. The second validation dataset was used to test RCALs. The median of between-assay differences ranged from −0.0053 to 0.1955 mIU/L of TSH. Elecsys recalibrated to Access (and vice-versa) showed non-significant difference. TSH RI after RCAL resulted in 0.37–5.11 mIU/L overall, 0.49–4.96 mIU/L for females and 0.40–4.92 mIU/L for males. A significant difference across age classes was identified.ConclusionsPercentile normalization and robust regression are valuable tools for deriving RCALs and harmonizing TSH values.


2017 ◽  
Vol 33 (2) ◽  
pp. 232-238
Author(s):  
Jiannan Huang ◽  
Qi Wang ◽  
Caimin Zhao ◽  
Xiaohua Ying ◽  
Haidong Zou

Objectives: To compare the recently used phacoemulsification systems using a health technology assessment (HTA) model.Methods: A self-administered questionnaire, which included questions to gauge on the opinions of the recently used phacoemulsification systems, was distributed to the chief cataract surgeons in the departments of ophthalmology of eighteen tertiary hospitals in Shanghai, China. A series of senile cataract patients undergoing phacoemulsification surgery were enrolled in the study. The surgical results and the average costs related to their surgeries were all recorded and compared for the recently used phacoemulsification systems.Results: The four phacoemulsification systems currently used in Shanghai are the Infiniti Vision, Centurion Vision, WhiteStar Signature, and Stellaris Vision Enhancement systems. All of the doctors confirmed that the systems they used would help cataract patients recover vision. A total of 150 cataract patients who underwent phacoemulsification surgery were enrolled in the present study. A significant difference was found among the four groups in cumulative dissipated energy, with the lowest value found in the Centurion group. No serious complications were observed and a positive trend in visual acuity was found in all four groups after cataract surgery. The highest total cost of surgery was associated with procedures conducted using the Centurion Vision system, and significant differences between systems were mainly because of the cost of the consumables used in the different surgeries.Conclusions: This HTA comparison of four recently used phacoemulsification systems found that each of system offers a satisfactory vision recovery outcome, but differs in surgical efficacy and costs.


Sign in / Sign up

Export Citation Format

Share Document