Experimental test of vision-based navigation and system identification of an unmanned underwater survey vehicle (SAGA) for the yaw motion

2019 ◽  
Vol 41 (8) ◽  
pp. 2160-2170 ◽  
Author(s):  
Seda Karadeniz Kartal ◽  
M. Kemal Leblebicioglu ◽  
Emre Ege

In this study, a nonlinear mathematical model for an unmanned underwater survey vehicle (SAGA) is obtained. The structure of the mathematical model of the vehicle comes from a Newton–Euler formulation. The yaw motion is realized by a suitable combination of right and left thrusters. The navigation problem is solved by using the inertial navigation system and vision-based measurements together. These are integrated to more accurately obtain navigation data for the vehicle. In addition, the magnetic compass is used to support the attitude information of the vehicle. A pool experimental set-up is designed to test the navigation system. Performance of the resultant navigation system can be analysed by creating suitable system state, measurement and noise models. The navigational data for the vehicle has been improved using a Kalman filter. The mathematical model of the vehicle includes some unknown parameters such as added mass and damping coefficients. It is not possible to determine all the parameter values as their effects on the state of the system are usually negligible. On the other hand, most of the ‘important’ parameters are obtained based on a system identification study of the vehicle using this estimated navigational data for coupled motion. This study is performed in a MATLAB/Simulink environment.

2018 ◽  
Vol 40 (8) ◽  
pp. 2476-2487 ◽  
Author(s):  
Seda Karadeniz Kartal ◽  
M Kemal Leblebicioglu ◽  
Emre Ege

In this study, a nonlinear mathematical model for an unmanned underwater survey vehicle (SAGA) is obtained. The structure of the mathematical model of the vehicle comes from a Newton–Euler formulation. The three-dimensional motion is realized by a suitable combination of right, left and vertical thrusters. The navigation problem is solved by a combination of the inertial navigation system and acoustic-based measurements, which are integrated to obtain more accurate vehicle navigation data. In addition, a magnetic compass and a depth sensor are used to support vehicle attitude and depth information. A pool experimental set-up is designed for the navigation system. The performance of the resultant navigation system can be analysed by creating suitable system state, measurement and noise models. The vehicle navigational data are improved with a Kalman filter. The mathematical model of the vehicle includes some unknown parameters, such as added mass and damping coefficients. It is not possible to determine all the parameter values as their effect on the state of the system is usually negligible. However, most of the ‘important’ parameters are obtained from a system identification study of the vehicle by means of the estimated navigational data for coupled motion. The entire study is performed in a Matlab/Simulink environment.


2021 ◽  
Author(s):  
Farjana Aktar

Experimental data demonstrates that simultaneous injection of cancer cells at two distinct sites often results in one large and one small tumour. Unbalanced tumour-stimulating inflammation is hypothesized to be the cause of this growth rate separation, causing one tumour to grow faster than the other. Here, a mathematical model for immune recruitment and competition between two cancer sites is developed to explore the role of tumour-promoting inflammation in the observed growth rate separation. Due to the experimental set-up, immune predation may be neglected, focusing the model on tumour-promoting immune actions. A new mathematical model with localized immune recruitment and competition between the two cancer sites is developed using a multi-compartment ODE system. A simulated annealing algorithm is used to fit the model to control data (one tumour burden). Stability and parameter sensitivity analyses are used to explore the mathematical model and parameter space. Next, the two-tumour scenario is predicted by testing parameter values tied to possible biological mechanisms of action. The model predicts that indeed inflammation may be a contributor to growth rate separation observed in simultaneous tumour growth, if one site is pre-inflamed compared to the other.


2021 ◽  
Author(s):  
Farjana Aktar

Experimental data demonstrates that simultaneous injection of cancer cells at two distinct sites often results in one large and one small tumour. Unbalanced tumour-stimulating inflammation is hypothesized to be the cause of this growth rate separation, causing one tumour to grow faster than the other. Here, a mathematical model for immune recruitment and competition between two cancer sites is developed to explore the role of tumour-promoting inflammation in the observed growth rate separation. Due to the experimental set-up, immune predation may be neglected, focusing the model on tumour-promoting immune actions. A new mathematical model with localized immune recruitment and competition between the two cancer sites is developed using a multi-compartment ODE system. A simulated annealing algorithm is used to fit the model to control data (one tumour burden). Stability and parameter sensitivity analyses are used to explore the mathematical model and parameter space. Next, the two-tumour scenario is predicted by testing parameter values tied to possible biological mechanisms of action. The model predicts that indeed inflammation may be a contributor to growth rate separation observed in simultaneous tumour growth, if one site is pre-inflamed compared to the other.


2014 ◽  
Vol 945-949 ◽  
pp. 777-780
Author(s):  
Tao Liu ◽  
Yong Xu ◽  
Bo Yuan Mao

Firstly, according to the structure characteristics of precision centrifuge, the mathematical model of its dynamic balancing system was set up, and the dynamic balancing scheme of double test surfaces, double emendation surfaces were established. Then the dynamic balance system controller of precision centrifuge was designed. Simulation results show that the controller designed can completely meet the requirements of precision centrifuge dynamic balance control system.


Author(s):  
Yu Liu ◽  
Feng Gao

The working state of the five hundred-meter aperture spherical telescope (FAST) is solved using the step-wise assignment method. In this paper, the mathematical model of the cable-net support structure of the FAST is set up by the catenary equation. There are a large number of nonlinear equations and unknown parameters of the model. The nonlinear equations are solved by using the step-wise assignment method. The method is using the analytical solutions of the cable-net equations of one working state as the initial value for the next working state, from which the analytical solutions of the nonlinear equations of the cable-net for each working state of the FAST and the tension and length of each driving cable can be obtained. The suggested algorithm is quite practically well suited to study the working state of the cable-net structures of the FAST. Also, the working state analysis result of the cable-net support structure of a reduced model of the cable-net structure reflector for the FAST is given to verify the reliability of the method. In order to show the validity of the method, comparisons with another algorithm to set the initial value are presented. This method has an important guiding significance to the further study on the control of the new type of flexible cable driving mechanism, especially the FAST.


2014 ◽  
Vol 945-949 ◽  
pp. 3187-3190
Author(s):  
Hai Dong ◽  
Jin Hua Liu ◽  
Liang Yu Liu

The bullwhip effect was caused by fuzzy demand among the enterprises. In order to reduce this effect, control theory was applied to solve the inventory in supply chain. Firstly, inventory control in supply chain and the bullwhip effect was researched. Secondly, a kind of proportional integral differential (PID) controller was developed for inventory control in a three-level supply chain, and the mathematical model of the PID controller for inventory control was presented. Finally, the results show that the PID controller can evidently alleviate the bullwhip effect and inventory fluctuations under the suitable combination of control gain.


2021 ◽  
Vol 6 (2) ◽  
pp. 83-88
Author(s):  
Asmaidi As Med ◽  
Resky Rusnanda

Mathematical modeling utilized to simplify real phenomena that occur in everyday life. Mathematical modeling is popular to modeling the case of the spread of disease in an area, the growth of living things, and social behavior in everyday life and so on. This type of research is included in the study of theoretical and applied mathematics. The research steps carried out include 1) constructing a mathematical model type SEIRS, 2) analysis on the SEIRS type mathematical model by using parameter values for conditions 1and , 3) Numerical simulation to see the behavior of the population in the model, and 4) to conclude the results of the numerical simulation of the SEIRS type mathematical model. The simulation results show that the model stabilized in disease free quilibrium for the condition  and stabilized in endemic equilibrium for the condition .


2021 ◽  
Vol 2091 (1) ◽  
pp. 012033
Author(s):  
V M Vishnevsky ◽  
K A Vytovtov ◽  
E A Barabanova ◽  
V E Buzdin

Abstract The mathematical model for reliability indicators calculation of the hybrid navigation system containing microwave and technical vision subsystems is proposed in this paper for the first time. The proposed method is based on the translation matrix concept of solutions to the Kolmogorov equation system and it allows us to obtain the mathematical expression of availability factor, downtime ratio, and other reliability indicators. Also the presented approach allows finding the reliability indicators for the cases of jump change of transition intensities caused by external influences. Besides the analytical method can be used for investigation of hybrid navigation system transient mode functioning. The results of the numerical calculations clearly demonstrated correctness of the proposed approach.


Author(s):  
Yoshifumi Mori ◽  
Takashi Saito ◽  
Yu Mizobe

We focused on vibration characteristics of reciprocating compressors and constructed the mathematical model to calculate the natural frequencies and modes for crank angles and proposed a method to estimate the degree and the suspicious portion of failure by difference of temporal parameter values obtained using measuring data in operation and the mathematical model. In this paper, according to the proposed method, a case study is carried out using the field data, where the data were acquired before and after the failures occurred in the connecting parts of connecting rod, to prospect the difference between each parameter value for two operating states. Inspecting resonant characteristics each in the frequency response data relating to the natural frequencies for bending modes of the piston rod, we determined two resonant frequencies, which could correspond to the 1st and 2nd mode about bending of the piston rod. To equate the calculated each natural frequency from eigen value analysis based on the proposed model with each resonant frequency, we define the error function for the identified problem, namely optimum problem. In the identified results, it is found that some parameter values have much difference and the corresponding failure could occur around the connecting rod. We could show the possibility to detect both the change of the parameter values and the deterioration parts for two different kinds of the operating states by our proposed method.


Author(s):  
Jia Xiaohong ◽  
Ji Linhong ◽  
Jin Dewen ◽  
Zhang Jichuan

Abstract Clearance is inevitable in the kinematic joints of mechanisms. In this paper the dynamic behavior of a crank-slider mechanism with clearance in its tripod-ball sliding joint is investigated theoretically and experimentally. The mathematical model of this new-type joint is established, and the new concepts of basal system and active system are put forward. Based on the mode-change criterion established in this paper, the consistent equations of motion in full-scale are derived by using Kane method. The experimental rig was set up to measure the effects of the clearance on the dynamic response. Corresponding experimental studies verify the theoretical results satisfactorily. In addition, due to the nonlinear elements in the improved mathematical model of the joint with clearance, the chaotic responses are found in numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document