Experimental test of the acoustic-based navigation and system identification of an unmanned underwater survey vehicle (SAGA)

2018 ◽  
Vol 40 (8) ◽  
pp. 2476-2487 ◽  
Author(s):  
Seda Karadeniz Kartal ◽  
M Kemal Leblebicioglu ◽  
Emre Ege

In this study, a nonlinear mathematical model for an unmanned underwater survey vehicle (SAGA) is obtained. The structure of the mathematical model of the vehicle comes from a Newton–Euler formulation. The three-dimensional motion is realized by a suitable combination of right, left and vertical thrusters. The navigation problem is solved by a combination of the inertial navigation system and acoustic-based measurements, which are integrated to obtain more accurate vehicle navigation data. In addition, a magnetic compass and a depth sensor are used to support vehicle attitude and depth information. A pool experimental set-up is designed for the navigation system. The performance of the resultant navigation system can be analysed by creating suitable system state, measurement and noise models. The vehicle navigational data are improved with a Kalman filter. The mathematical model of the vehicle includes some unknown parameters, such as added mass and damping coefficients. It is not possible to determine all the parameter values as their effect on the state of the system is usually negligible. However, most of the ‘important’ parameters are obtained from a system identification study of the vehicle by means of the estimated navigational data for coupled motion. The entire study is performed in a Matlab/Simulink environment.

2019 ◽  
Vol 41 (8) ◽  
pp. 2160-2170 ◽  
Author(s):  
Seda Karadeniz Kartal ◽  
M. Kemal Leblebicioglu ◽  
Emre Ege

In this study, a nonlinear mathematical model for an unmanned underwater survey vehicle (SAGA) is obtained. The structure of the mathematical model of the vehicle comes from a Newton–Euler formulation. The yaw motion is realized by a suitable combination of right and left thrusters. The navigation problem is solved by using the inertial navigation system and vision-based measurements together. These are integrated to more accurately obtain navigation data for the vehicle. In addition, the magnetic compass is used to support the attitude information of the vehicle. A pool experimental set-up is designed to test the navigation system. Performance of the resultant navigation system can be analysed by creating suitable system state, measurement and noise models. The navigational data for the vehicle has been improved using a Kalman filter. The mathematical model of the vehicle includes some unknown parameters such as added mass and damping coefficients. It is not possible to determine all the parameter values as their effects on the state of the system are usually negligible. On the other hand, most of the ‘important’ parameters are obtained based on a system identification study of the vehicle using this estimated navigational data for coupled motion. This study is performed in a MATLAB/Simulink environment.


2021 ◽  
Vol 40 (4) ◽  
pp. 8493-8500
Author(s):  
Yanwei Du ◽  
Feng Chen ◽  
Xiaoyi Fan ◽  
Lei Zhang ◽  
Henggang Liang

With the increase of the number of loaded goods, the number of optional loading schemes will increase exponentially. It is a long time and low efficiency to determine the loading scheme with experience. Genetic algorithm is a search heuristic algorithm used to solve optimization in the field of computer science artificial intelligence. Genetic algorithm can effectively select the optimal loading scheme but unable to utilize weight and volume capacity of cargo and truck. In this paper, we propose hybrid Genetic and fuzzy logic based cargo-loading decision making model that focus on achieving maximum profit with maximum utilization of weight and volume capacity of cargo and truck. In this paper, first of all, the components of the problem of goods stowage in the distribution center are analyzed systematically, which lays the foundation for the reasonable classification of the problem of goods stowage and the establishment of the mathematical model of the problem of goods stowage. Secondly, the paper abstracts and defines the problem of goods loading in distribution center, establishes the mathematical model for the optimization of single car three-dimensional goods loading, and designs the genetic algorithm for solving the model. Finally, Matlab is used to solve the optimization model of cargo loading, and the good performance of the algorithm is verified by an example. From the performance evaluation analysis, proposed the hybrid system achieve better outcomes than the standard SA model, GA method, and TS strategy.


2021 ◽  
Vol 2091 (1) ◽  
pp. 012033
Author(s):  
V M Vishnevsky ◽  
K A Vytovtov ◽  
E A Barabanova ◽  
V E Buzdin

Abstract The mathematical model for reliability indicators calculation of the hybrid navigation system containing microwave and technical vision subsystems is proposed in this paper for the first time. The proposed method is based on the translation matrix concept of solutions to the Kolmogorov equation system and it allows us to obtain the mathematical expression of availability factor, downtime ratio, and other reliability indicators. Also the presented approach allows finding the reliability indicators for the cases of jump change of transition intensities caused by external influences. Besides the analytical method can be used for investigation of hybrid navigation system transient mode functioning. The results of the numerical calculations clearly demonstrated correctness of the proposed approach.


2021 ◽  
Vol 13 (5) ◽  
pp. 820-828
Author(s):  
Wei Zhang ◽  
Shengli Lv ◽  
Leijiang Yao ◽  
Xiaoyan Tong

The prediction of corrosion damage is one of effective research methods in the safety inspection of aging aircraft structures. A mathematical model for quantifying corrosion damage is used in this paper to predict the onset of corrosion on structural surfaces exposed to aggressive environments. Based on the finite difference technique, the evolution process of local pitting corrosion on the surface of aluminum alloy in the medium is simulated, which can consider the sudden onset and the randomness of pitting corrosion. The effect of local ion concentration and oxide film damage on subsequent pitting nucleation was analyzed. Based on the efficient calculation program, the effectiveness of the mathematical model is verified by the comparison between the corrosion damage morphology and the experimental data in the literature. The results show a more widespread distribution of subsequent pits because of stronger aggressive ions are released during the life cycle of active pits and the higher diffusion coefficient of the aggressive ions. The three dimensional morphology is generated by image processing method based on the gray value of the two dimensional image of pits.


Author(s):  
Mohammed Rajik Khan ◽  
Puneet Tandon

In order to machine multiple sculptured surfaces with reduced machining time and high accuracy of the machined parts, shape design of a customised multi-point rotary cutting tool needs to be evolved. In the present work, a novel design of a generic multi-profile form milling cutter is developed for machining various multiple sculptured surfaces. This article describes in detail the mathematical model to design an accurate three-dimensional geometry of a generic multi-profile form milling cutter. Use of non-uniform rational B-spline curve(s) and sweep surfaces enables to control the shape of cutting flutes of the generic multi-profile form milling cutter. The article also discusses the methodology to develop a variety of cutters lying in the same conceptual family of multi-profile form milling cutter. To physically visualise the cutter and to show one of the downstream applications once a three-dimensional model of the cutter is available, one of the multi-profile form milling cutters is fabricated. The proposed methodology offers an intuitive high-quality mathematical model for a generic family of multi-profile form milling cutters, which is different from the traditional three-dimensional models.


1979 ◽  
Vol 101 (3) ◽  
pp. 326-336 ◽  
Author(s):  
M. A. Serag-Eldin ◽  
D. B. Spalding

The paper presents a mathematical model for three-dimensional, swirling, recirculating, turbulent flows inside can combustors. The present model is restricted to single-phase, diffusion-controlled combustion, with negligible radiation heat-transfer; however, the introduction of other available physical models can remove these restrictions. The mathematical model comprises differential equations for: continuity, momentum, stagnation enthalpy, concentration, turbulence energy, its dissipation rate, and the mean square of concentration fluctuations. The simultaneous solution of these equations by means of a finite-difference solution algorithm yields the values of the variables at all internal grid nodes. The prediction procedure, composed of the mathematical model and its solution algorithm, is applied to predict the fields of variables within a representative can combustor; the results are compared with corresponding measurements. The predicted results give the same trends as the measured ones, but the quantitative agreement is not always acceptable; this is attributed to the combustion process not being truly diffusion-controlled for the experimental conditions investigated.


Author(s):  
S-J Seo ◽  
K-Y Kim ◽  
S-H Kang

A numerical study is presented for Reynolds-averaged Navier-Stokes analysis of three-dimensional turbulent flows in a multiblade centrifugal fan. Present work aims at development of a relatively simple analysis method for these complex flows. A mathematical model of impeller forces is obtained from the integral analysis of the flow through the impeller. A finite volume method for discretization of governing equations and a standard k-ɛ model as turbulence closure are employed. For the validation of the mathematical model, the computational results for velocity components, static pressure, and flow angles at the exit of the impeller were compared with experimental data. The comparisons show generally good agreement, especially at higher flow coefficients.


2010 ◽  
Vol 160-162 ◽  
pp. 1680-1684
Author(s):  
Xing Jun Gao ◽  
Qing Liu ◽  
Ping Zou ◽  
Jian Song ◽  
Ping Li

The fundamental principle of the twist drill conical grinding method was introduced. The mathematical model of the twist drill was established. Mathematical model to establish drill bit is the geometric design, manufacture, cutting analysis and modeling on the basis of the drilling process. According to the twist drill grinding principle, using Pro/E the three-dimensional modeling of the twist drill was completed, and the feature of the conical grinding method was analyzed.


2005 ◽  
Vol 11 (12) ◽  
pp. 1469-1486 ◽  
Author(s):  
Ashutosh Bagchi

Model updating is an important step for correlating the mathematical model of a structure to the real one. There are a variety of techniques available for model updating using dynamic and static measurements of the structure’s behavior. This paper concentrates on the model updating techniques using the natural frequencies or frequencies and mode shapes of a structure. An iterative technique is developed based on the matrix update method. The method hasbeenappliedtothefiniteelement models of a three span continuous steel free deck bridge located in western Canada. The finite element models of the bridge have been constructed using three-dimensional beam and facet shell elements and the models have been updated using the measured frequencies. From the study it is clear that the initial model needs to be built such that it represents the actual structure as closely as possible. The results demonstrate that the difference between the modal parameters from the model and field tests affect the quality of the model updating process.


Sign in / Sign up

Export Citation Format

Share Document