scholarly journals Shielding of Piezoelectric Ultrasonic Probes in Hall Effect Imaging

1998 ◽  
Vol 20 (3) ◽  
pp. 206-220 ◽  
Author(s):  
Han Wen ◽  
Eric Bennett ◽  
David G. Wiesler

This paper addresses significant sources of electromagnetic noise in Hall effect imaging. Hall effect imaging employs large electrical pulses for signal generation and high sensitivity ultrasonic probes for signal reception. Coherent noise arises through various coupling mechanisms between the excitation pulse and the probe. In this paper, the coupling mechanisms are experimentally isolated and theoretically analyzed. Several methods of shielding the probe from electromagnetic interference are devised and tested. These methods are able to reduce the noise to levels below the random thermal noise, thereby improving the signal-to-noise ratio in HEI by two orders of magnitude.

Geophysics ◽  
2021 ◽  
pp. 1-51
Author(s):  
Chao Wang ◽  
Yun Wang

Reduced-rank filtering is a common method for attenuating noise in seismic data. As conventional reduced-rank filtering distinguishes signals from noises only according to singular values, it performs poorly when the signal-to-noise ratio is very low, or when data contain high levels of isolate or coherent noise. Therefore, we developed a novel and robust reduced-rank filtering based on the singular value decomposition in the time-space domain. In this method, noise is recognized and attenuated according to the characteristics of both singular values and singular vectors. The left and right singular vectors corresponding to large singular values are selected firstly. Then, the right singular vectors are classified into different categories according to their curve characteristics, such as jump, pulse, and smooth. Each kind of right singular vector is related to a type of noise or seismic event, and is corrected by using a different filtering technology, such as mean filtering, edge-preserving smoothing or edge-preserving median filtering. The left singular vectors are also corrected by using the filtering methods based on frequency attributes like main-frequency and frequency bandwidth. To process seismic data containing a variety of events, local data are extracted along the local dip of event. The optimal local dip is identified according to the singular values and singular vectors of the data matrices that are extracted along different trial directions. This new filtering method has been applied to synthetic and field seismic data, and its performance is compared with that of several conventional filtering methods. The results indicate that the new method is more robust for data with a low signal-to-noise ratio, strong isolate noise, or coherent noise. The new method also overcomes the difficulties associated with selecting an optimal rank.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6316
Author(s):  
Guillermo Royo ◽  
Carlos Sánchez-Azqueta ◽  
Concepción Aldea ◽  
Santiago Celma

In this letter, we present a novel technique to increase the sensitivity of optical read-out with large integrated photodiodes (PD). It consists of manufacturing the PD in several pieces, instead of a single device, and connecting a dedicated transimpedance amplifier (TIA) to each of these pieces. The output signals of the TIAs are combined, achieving a higher signal-to-noise ratio than with the traditional approach. This work shows a remarkable improvement in the sensitivity and transimpedance without the need for additional modifications or compensation techniques. As a result, an increase in sensitivity of 7.9 dBm and transimpedance of 8.7 dBΩ for the same bandwidth is achieved when dividing the photodiode read-out into 16 parallel paths. The proposed divide-and-conquer technique can be applied to any TIA design, and it is also independent of the core amplifier structure and fabrication process, which means it is compatible with every technology allowing the integration of PDs.


ACS Sensors ◽  
2020 ◽  
Vol 5 (12) ◽  
pp. 3979-3987
Author(s):  
Jing Su ◽  
Wenhan Liu ◽  
Shixing Chen ◽  
Wangping Deng ◽  
Yanzhi Dou ◽  
...  

2000 ◽  
Vol 6 (S2) ◽  
pp. 732-733
Author(s):  
S.A. Hiller ◽  
B. Kabius ◽  
W. Probst ◽  
H. Tröster ◽  
M. Trendelenburg ◽  
...  

Excellent linearity and high sensitivity have made SSCs the ideal image detector for almost every TEM application. Their ability to make high quality digital images available within fraction of seconds for further evaluation and processing in a PC, have made them a non-dispensable accessory for any modern TEM. However, despite their excellent characteristics, SSCs provide a restricted number of individual image points in respect to a negative, what is considered to be the main disadvantage of this detector. To compensate for this, CCDs with 2048x2048 pixel are available since some time. SSCs using these 2kx2k CCD arrays not only provide 4 times the pixel number but also offer a lot more options people have waiting for: e. g. highly resolved low-dose or ESI images with significantly improved signal to noise ratio, or higher resolved images for diffraction analysis and holographic reconstruction.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. V133-V141 ◽  
Author(s):  
J. Wang ◽  
F. Tilmann ◽  
R. S. White ◽  
P. Bordoni

Hydraulic fracture-induced microseismic events in producing oil and gas fields are usually small, and noise levels are high at the surface as a result of the heavy equipment in use. Similarly, in nonhydrocarbon settings, arrays for detecting local earthquakes will benefit from reduced noise levels and the ability to detect smaller events will be increased. We propose a frequency-dependent multichannel Wiener filtering technique with linear constraints that uses an adaptive least-squares method to remove coherent noise in seismic array data. The noise records on several reference channels are used to predict the noise on a primary channel and then can be subtracted from the observed data. On a test with an unconstrained version of this filter, maximal noise suppression leads to signal distortion. Two methods of im-posing constraints then achieve signal preservation. In one case study, synthetic signals are added to noise from a pilot deployment of a hexagonal array (nine three-component seismometers, approximately [Formula: see text]) above a gas field; noise levels are suppressed by up to [Formula: see text] (at [Formula: see text]). In a second case study, natural seismicity recorded at a dense array ([Formula: see text] spacing) in Italy is used, where the application of the filter improves the signal-to-noise ratio (S/N) more than [Formula: see text] (at [Formula: see text]) using 35 stations. In both cases, the performance of the multichannel Wiener filters is significantly better than stacking, espe-cially at lower frequencies where stacking does not help to suppress the coherent noise. The unconstrained version of the filter yields the best improvement in signal-to-noise ratio, but the constrained filter is useful when waveform distortion is unacceptable.


2018 ◽  
Vol 17 (04) ◽  
pp. 1850030
Author(s):  
Jiaao Song ◽  
Laszlo B. Kish

Classical ways of cooling require some of these elements: phase transition, compressor, nonlinearity, valve and/or switch. A recent example is the 2018 patent of Linear Technology Corporation; they utilize the shot noise of a diode to produce a standalone nonlinear resistor that has [Formula: see text]/2 noise temperature (about 150[Formula: see text]K). While such “resistor” can cool its environment when it is AC coupled to a resistor, the thermal cooling effect is only academically interesting. The importance of the invention is of another nature: In low-noise electronics, it is essential to have resistors with low-noise temperature to improve the signal-to-noise ratio. A natural question is raised: can we use a linear system with feedback to cool and, most importantly, to show reduced noise temperature? Exploring this problem, we were able to produce standalone linear resistors showing strongly reduced thermal noise. Our must successful test shows [Formula: see text]/100 (about 3[Formula: see text]K) noise temperature, as if the resistor would have been immersed in liquid helium. We also found that there is an old solution offering similar results utilizing the virtual ground of an inverting amplifier at negative feedback. There, the “cold” resistor is generated at the input of an amplifier. On the other hand, our system generates the “cold” resistance at the output, which can have practical advantages.


2000 ◽  
Vol 83 (1) ◽  
pp. 89-94 ◽  
Author(s):  
Elek Bolygo ◽  
Paul A Cooper ◽  
K Michael Jessop ◽  
Frank Moffatt

Abstract An improved capillary electrophoresis assay for histamine in crude extracts was developed and used to determine histamine levels in a selection of tomato fruits and pastes. Performance in terms of reproducibility and sensitivity was optimized by use of a high sensitivity detector flow cell, sodium hydroxide rinses, and a voltage gradient. The method was linear down to 0.2 μg/mL (signal-to-noise ratio = 4:1), which was below the endogenous level in all samples.


2013 ◽  
Vol 347-350 ◽  
pp. 1763-1767
Author(s):  
Wei Tong Zhang ◽  
Zhi Qiang Li ◽  
Wen Ming Zhu

Frequency locked loop (FLL) plays an important role in carrier synchronization because of its excellent dynamic performance. However, it performs inadequately in low signal-to-noise ratio (SNR). In this paper, the principle of stochastic resonance (SR) is briefly introduced and a SR processor is proposed. Based on traditional FLL, the SR processor is added before frequency discriminator in order to weaken the effect that thermal noise brings to FLL. The paper investigates the processing effect of SR. Simulation results show that the performance of improved FLL is greatly improved. It can tolerate rather high dynamics and tracking accuracy of frequency achieve 0.2Hz even with CNR as low as 25 dBHz, which verified the validity of above ideas.


Sign in / Sign up

Export Citation Format

Share Document