mRNA expression of ageing-associated genes in calorie reduction is subject to donor variability and can be induced by calorie restriction mimetics

2020 ◽  
Vol 26 (3) ◽  
pp. 253-262
Author(s):  
Katja Matt ◽  
Barbara Hochecker ◽  
Alica Schöller-Mann ◽  
Jörg Bergemann

Background: Finding ways to a healthier ageing are increasingly becoming the focus of geriatric research. One way to accomplish this could be calorie restriction, as this is known to positively influence the ageing of model organisms. Aim: The aim of this study was to investigate the influence of calorie reduction (F. X. Mayr therapy) and of the calorie restriction mimetics resveratrol and spermidine on the expression of ageing-associated genes. Methods: mRNA expression in peripheral blood mononuclear cells (PBMCs) of 18 participants taking part in an F. X. Mayr therapy was analysed. The PBMCs of one additional participant were treated ex vivo with spermidine or resveratrol. mRNA expression of SIRT1, SIRT3, FOXO3 and SOD2 was determined for these two calorie restriction mimetics. For the F. X. Mayr therapy samples, mRNA of XPA was analysed additionally. Results: mRNA expression of the ageing-associated genes showed a distinct donor variation during F. X. Mayr therapy, with a significant increase in mRNA expression of SIRT1. Expression of XPA was similar to SIRT1, with a significant correlation at the last time point tested. Spermidine treatment of PBMCs resulted in a significantly increased expression of all genes tested, whereas resveratrol treatment caused a significant increase of SIRT3, FOXO3 and SOD2 mRNA expression. Conclusions: By increasing SIRT1 and XPA mRNA expression, calorie reduction in the form of F. X. Mayr therapy could contribute to a healthier ageing; however, the donor variability observed showed that not everyone benefited from this. Calorie restriction mimetics may be an option for promote healthier ageing for those who do not benefit from calorie reduction.

2020 ◽  
pp. 1-8
Author(s):  
Stephen R. Hennigar ◽  
Alyssa M. Kelley ◽  
Bradley J. Anderson ◽  
Nicholes J. Armstrong ◽  
Holly L. McClung ◽  
...  

Abstract Zn is an essential nutrient for humans; however, a sensitive biomarker to assess Zn status has not been identified. The objective of this study was to determine the reliability and sensitivity of Zn transporter and metallothionein (MT) genes in peripheral blood mononuclear cells (PBMCs) to Zn exposure ex vivo and to habitual Zn intake in human subjects. In study 1, human PBMCs were cultured for 24 h with 0–50 µm ZnSO4 with or without 5 µm N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), and mRNA expression of SLC30A1-10, SLC39A1-14, MT1 subtypes (A, B, E, F, G, H, L, M and X), MT2A, MT3 and MT4 mRNA was determined. In study 2, fifty-four healthy male and female volunteers (31·9 (sd 13·8) years, BMI 25·7 (sd 2·9) kg/m2) completed a FFQ, blood was collected, PBMCs were isolated and mRNA expression of selected Zn transporters and MT isoforms was determined. Study 1: MT1E, MT1F, MT1G, MT1H, MT1L, MT1M, MT1X, MT2A and SLC30A1 increased with increasing concentrations of Zn and declined with the addition of TPEN. Study 2: Average daily Zn intake was 16·0 (sd 5·3) mg/d (range: 9–31 mg/d), and plasma Zn concentrations were 15·5 (SD 2·8) μmol/l (range 11–23 μmol/l). PBMC MT2A was positively correlated with dietary Zn intake (r 0·306, P = 0·03) and total Zn intake (r 0·382, P < 0·01), whereas plasma Zn was not (P > 0·05 for both). Findings suggest that MT2A mRNA in PBMCs reflects dietary Zn intake in healthy adults and may be a component in determining Zn status.


2002 ◽  
Vol 8 (6) ◽  
pp. 447-451 ◽  
Author(s):  
T Seifert ◽  
B C Kieseier ◽  
S Ropele ◽  
S Strasser-Fuchs ◽  
F Quehenberger ◽  
...  

Tumor necrosis factor-a (TNF-a) is involved in the pathogenesis of multiple sclerosis (MS). It has to be released from its cell membrane-bound precursor by proteolytic cleavage. This is mainly performed by a member of the ADAM (a disintegrin and metalloproteinase) family of enzymes, TNF-a-converting enzyme (TACE, ADAM 17). In a longitudinal study on 11 relapsing-remitting MS patients, we qualitatively determined mRNA expression of TNF-a and TACE in peripheral blood mononuclear cells (PBMCs) without ex vivo stimulation. mRNA expression was related to disease activity as assessed by monthly gadolinium (Gd)-enhanced brain magnetic resonance imaging (MRI). Patients found positive for TACE mRNA in PBMCs showed a significantly higher mean number of new Gd-enhancing lesions per scan one month following PBMC sampling.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nan Xiao ◽  
Meng Nie ◽  
Huanhuan Pang ◽  
Bohong Wang ◽  
Jieli Hu ◽  
...  

AbstractCytokine release syndrome (CRS) is a major cause of the multi-organ injury and fatal outcome induced by SARS-CoV-2 infection in severe COVID-19 patients. Metabolism can modulate the immune responses against infectious diseases, yet our understanding remains limited on how host metabolism correlates with inflammatory responses and affects cytokine release in COVID-19 patients. Here we perform both metabolomics and cytokine/chemokine profiling on serum samples from healthy controls, mild and severe COVID-19 patients, and delineate their global metabolic and immune response landscape. Correlation analyses show tight associations between metabolites and proinflammatory cytokines/chemokines, such as IL-6, M-CSF, IL-1α, IL-1β, and imply a potential regulatory crosstalk between arginine, tryptophan, purine metabolism and hyperinflammation. Importantly, we also demonstrate that targeting metabolism markedly modulates the proinflammatory cytokines release by peripheral blood mononuclear cells isolated from SARS-CoV-2-infected rhesus macaques ex vivo, hinting that exploiting metabolic alterations may be a potential strategy for treating fatal CRS in COVID-19.


Author(s):  
Véronique Avettand-Fenoel ◽  
Jérôme Lechenadec ◽  
Mariama Sadjo Diallo ◽  
Marine Fillion ◽  
Adeline Melard ◽  
...  

Abstract Background Early combined antiretroviral therapy (cART) limits the total HIV-DNA load in children. However, data on its impact in older children and adolescents remain scarce. This study aims to compare HIV reservoirs in children (5-12 years) and adolescents (13-17 years) who started cART before 6 months (early (E-)group) or after 2 years old (late (L-)group). Methods The ANRS-EP59-CLEAC study prospectively enrolled 76 HIV-1 perinatally-infected patients who reached HIV-RNA&lt;400 copies/mL less than 24 months after cART initiation, regardless of subsequent viral suppression (E-group: 27 children, 9 adolescents; L-group: 19 children, 21 adolescents). Total and integrated HIV-DNA were quantified in blood and in CD4+ T cell subsets. A substudy assessed HIV reservoir inducibility after ex vivo peripheral blood mononuclear cells (PBMCs) stimulation. Results Total HIV-DNA levels were lower in early- than late-treated patients (Children: 2.14 vs 2.87 log cp/million PBMCs, p&lt;0.0001; Adolescents: 2.25 vs 2.74log, p&lt;0.0001). Low reservoir was independently associated with treatment precocity, protective HLA and low cumulative viremia since cART initiation. The 60 participants with undetectable integrated HIV-DNA started cART earlier than the other patients (4 vs 54 months, p=0.03). In those with sustained virological control, transitional memory and effector memory CD4+T cells were less infected in the E-group than in the L-group (p=0.03 and 0.02, respectively). Viral inducibility of reservoir cells after normalization to HIV-DNA levels was similar between the groups. Conclusions Early cART results in a smaller blood HIV reservoir until adolescence, but all tested participants had an inducible reservoir. This deserves cautious consideration for HIV remission strategies.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xin Hu ◽  
Xiaoqian Shang ◽  
Liang Wang ◽  
Jiahui Fan ◽  
Yue Wang ◽  
...  

Abstract Aim Brucellar spondylitis (BS) is one of the most serious complications of brucellosis. CXCR3 is closely related to the severity of disease infection. This research aimed to study the degree of BS inflammatory damage through analyzing the expression levels of CXCR3 and its ligands (CXCL9 and CXCL10) in patients with BS. Methods A total of 29 BS patients and 15 healthy controls were enrolled. Real-Time PCR was used to detect the mRNA expression levels of IFN-γ, CXCR3, CXCL9 and CXCL10 in peripheral blood mononuclear cells (PBMCs) of BS patients and healthy controls. Hematoxylin-Eosin staining was used to show the pathological changes in BS lesion tissues. Immunohistochemistry staining was used to show the protein expression levels of Brucella-Ab, IFN-γ, CXCR3, CXCL9 and CXCL10 in BS lesion tissues. At the same time, ELISA was used to detect the serum levels of IFN-γ, CXCL9 CXCL10 and autoantibodies against CXCR3 in patients with BS. Results In lesion tissue of BS patients, it showed necrosis of cartilage, acute or chronic inflammatory infiltration. Brucella-Ab protein was abundantly expressed in close lesion tissue. And the protein expression levels of IFN-γ, CXCR3 and CXCL10 were highly expressed in close lesion tissue and serum of BS patients. At the same time, the mRNA expression levels of IFN-γ, CXCR3 and CXCL10 in PBMCs of BS patients were significantly higher than those in controls. Conclusion In our research, the expression levels of IFN-γ, CXCR3 and its ligands were significantly higher than those in controls. It suggested that high expression levels of IFN-γ, CXCR3 and its ligands indicated a serious inflammatory damage in patients with BS.


2002 ◽  
Vol 76 (15) ◽  
pp. 7418-7429 ◽  
Author(s):  
O. Martin Williams ◽  
Keith W. Hart ◽  
Eddie C. Y. Wang ◽  
Colin M. Gelder

ABSTRACT Human papillomavirus type 11 (HPV-11) infection causes genital warts and recurrent respiratory papillomatosis. While there is compelling evidence that CD4+ T cells play an important role in immune surveillance of HPV-associated diseases, little is known about human CD4+ T-cell recognition of HPV-11. We have investigated the CD4+ T-cell responses of 25 unrelated healthy donors to HPV-11 L1 virus-like particles (VLP). CD4+ T-cell lines from 21 of 25 donors were established. Cell sorting experiments carried out on cells from six donors demonstrated that the response was located in the CD45RAlow CD45ROhigh memory T-cell population. To determine the peptide specificity of these responses, epitope selection was analyzed by using 95 15-mer peptides spanning the entire HPV-11 L1 protein. No single region of L1 was immunodominant; responders recognized between 1 and 10 peptides, located throughout the protein, and peptide responses fell into clear HLA class II restricted patterns. Panels of L1 peptides specific for skin and genital HPV were used to show that the L1 CD4+ T-cell responses were cross-reactive. The degree of cross-reactivity was inversely related to the degree of L1 sequence diversity between these viruses. Finally, responses to HPV-11 L1 peptides were elicited from ex vivo CD45RO+ peripheral blood mononuclear cells, demonstrating that recognition of HPV-11 was a specific memory response and not due to in vitro selection during tissue culture. This is the first study of CD4+ T-cell responses to HPV-11 in healthy subjects and demonstrates marked cross-reactivity with other skin and genital HPV types. This cross-reactivity may be of significance for vaccine strategies against HPV-associated clinical diseases.


Sign in / Sign up

Export Citation Format

Share Document