scholarly journals Initiating antiretroviral treatment early in infancy has long-term benefits on the HIV reservoir in late childhood and adolescence

Author(s):  
Véronique Avettand-Fenoel ◽  
Jérôme Lechenadec ◽  
Mariama Sadjo Diallo ◽  
Marine Fillion ◽  
Adeline Melard ◽  
...  

Abstract Background Early combined antiretroviral therapy (cART) limits the total HIV-DNA load in children. However, data on its impact in older children and adolescents remain scarce. This study aims to compare HIV reservoirs in children (5-12 years) and adolescents (13-17 years) who started cART before 6 months (early (E-)group) or after 2 years old (late (L-)group). Methods The ANRS-EP59-CLEAC study prospectively enrolled 76 HIV-1 perinatally-infected patients who reached HIV-RNA<400 copies/mL less than 24 months after cART initiation, regardless of subsequent viral suppression (E-group: 27 children, 9 adolescents; L-group: 19 children, 21 adolescents). Total and integrated HIV-DNA were quantified in blood and in CD4+ T cell subsets. A substudy assessed HIV reservoir inducibility after ex vivo peripheral blood mononuclear cells (PBMCs) stimulation. Results Total HIV-DNA levels were lower in early- than late-treated patients (Children: 2.14 vs 2.87 log cp/million PBMCs, p<0.0001; Adolescents: 2.25 vs 2.74log, p<0.0001). Low reservoir was independently associated with treatment precocity, protective HLA and low cumulative viremia since cART initiation. The 60 participants with undetectable integrated HIV-DNA started cART earlier than the other patients (4 vs 54 months, p=0.03). In those with sustained virological control, transitional memory and effector memory CD4+T cells were less infected in the E-group than in the L-group (p=0.03 and 0.02, respectively). Viral inducibility of reservoir cells after normalization to HIV-DNA levels was similar between the groups. Conclusions Early cART results in a smaller blood HIV reservoir until adolescence, but all tested participants had an inducible reservoir. This deserves cautious consideration for HIV remission strategies.

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Jingna Xun ◽  
Tangkai Qi ◽  
Lei Zou ◽  
Qi Tang ◽  
Yinzhong Shen ◽  
...  

Abstract Background Tuberculosis (Tb) is the most frequent opportunistic infection among people living with HIV infection. The impact of Tb co-infection in the establishment and maintenance of the HIV reservoir is unclear. Method We enrolled 13 HIV-infected patients with microbiologically confirmed Tb and 10 matched mono-HIV infected controls. Total HIV DNA in peripheral blood mononuclear cells (PBMCs), plasma interleukin-7 (IL-7) concentrations and the activities of indoleamine 2,3-dioxygenase (IDO) were measured for all the participants prior to therapy and after antiretroviral therapy (ART). Results After a duration of 16 (12, 22) months’ ART, patients co-infected with Tb who were cured of Tb maintained higher levels of HIV DNA compared with mono-HIV infected patients [2.89 (2.65- 3.05) log10 copies/106 cells vs. 2.30 (2.11–2.84) log10 copies/106 cells, P = 0.008]. The levels of on-ART HIV DNA were positively correlated with the baseline viral load (r = 0.64, P = 0.02) in Tb co-infected group. However, neither plasma IL-7 concentration nor plasma IDO activity was correlated with the level of on-ART HIV DNA. Conclusions Tb co-infection was associated with the increased surrogate marker of the HIV reservoir, while its mechanism warrants further examination.


Thorax ◽  
2020 ◽  
pp. thoraxjnl-2020-215520
Author(s):  
Carlos Machahua ◽  
Ivette Buendia-Roldan ◽  
Ranferi Ocaña-Guzman ◽  
María Molina-Molina ◽  
Annie Pardo ◽  
...  

BackgroundInterstitial lung abnormalities (ILA) occur in around 10% of subjects over 60 years, and are associated with a higher rate of all-cause mortality. The pathogenic mechanisms are unclear, and the putative contribution of alterations in the immune response has not been explored. Normal ageing is associated with immune deficiencies, including Naïve T-cell decrease and greater expression of the proliferative-limiting, co-inhibitory receptor killer-cell lectin-like receptor G1 (KLRG1).ObjectiveTo evaluate the frequency and activation state of different T-cell subpopulations in ILA subjects.MethodsPeripheral blood mononuclear cells were obtained from 15 individuals with ILA, 21 age-matched controls and 28 healthy young subjects. T-cells phenotype was characterised by flow cytometry, and proliferation and activation by stimulation with anti-CD3/anti-CD28 or phorbol myristate acetate/ionomycin; KLRG1 isoforms were evaluated by western blot and cytokines were quantified by ELISA and Multiplex.ResultsA significant increase of Naïve CD4+T cells together with a decrease of central and effector memory CD4+T cells was observed in ILA compared with age-matched controls. CD4+T cells from ILA subjects exhibited greater basal proliferation, which raised after anti-CD3/anti-CD28 stimulation. Additionally, a significant increase in the levels of interleukin-6 and interferon gamma was observed in isolated CD4+T cells and plasma of ILA subjects. They also displayed fewer KLRG1+/CD4+T cells with an increase of circulating E-cadherin, the ligand of KLRG1+. No changes were observed with CD8+T cell subsets.ConclusionCD4+T cells from ILA subjects are highly proliferative and show an excessive functional activity, likely related to the loss of KLRG1 expression, which may contribute to an inflammatory state and the development of ILA.


2019 ◽  
Vol 20 (7) ◽  
pp. 1642 ◽  
Author(s):  
Lambros Kordelas ◽  
Esther Schwich ◽  
Robin Dittrich ◽  
Peter Horn ◽  
Dietrich Beelen ◽  
...  

Treatment with extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have been suggested as novel therapeutic option in acute inflammation-associated disorders due to their immune-modulatory capacities. As we have previously observed differences in the cytokine profile of independent MSC-EV preparations, functional differences of MSC-EV preparations have to be considered. To evaluate the immune-modulatory capabilities of specific MSC-EV preparations, reliable assays are required to characterize the functionality of MSC-EV preparations prior to administration to a patient. To this end, we established an in vitro assay evaluating the immune-modulatory capacities of MSC-EV preparations. Here, we compared the efficacy of four independent MSC-EV preparations to modulate the induction of T cell differentiation and cytokine production after phorbol 12-myristate 13-acetate (PMA)/Ionomycin stimulation of peripheral blood mononuclear cells (PBMC) derived from six healthy donors. Flow cytometric analyses revealed that the four MSC-EV preparations differentially modulate the expression of surface markers, such as CD45RA, on CD4+ and CD8+ T cells, resulting in shifts in the frequencies of effector and effector memory T cells. Moreover, cytokine profile in T cell subsets was affected in a MSC-EV-specific manner exclusively in CD8+ naïve T cells. Strikingly, hierarchical clustering revealed that the T cell response towards the MSC-EV preparations largely varied among the different PBMC donors. Thus, besides defining functional activity of MSC-EV preparations, it will be crucial to test whether patients intended for treatment with MSC-EV preparations are in principal competent to respond to the envisioned MSC-EV therapy.


2009 ◽  
Vol 83 (11) ◽  
pp. 5442-5450 ◽  
Author(s):  
Sudhir Gupta ◽  
Sudhanshu Agrawal ◽  
Sastry Gollapudi

ABSTRACT The immune responses of naive and different memory subsets of CD4+ and CD8+ T cells to human herpesvirus 6 (HHV-6) have not been previously investigated. We show that HHV-6A induces cell division, as measured by 5,6-carboxyfluorescein succinimidyl ester dye and flow cytometry, predominantly in two populations of effector memory CD4+ and CD8+ T cells (TEM and TEMRA); naïve (TN) and central memory (TCM) CD4+ and CD8+ T cells showed almost no cell division. In contrast, HHV-6A induced apoptosis primarily in TN and TCM CD4+ and CD8+ T cells, whereas TEM and TEMRA CD4+ and CD8+ T cells were resistant to HHV-6A-induced apoptosis. HHV-6A-induced apoptosis was associated with activation of caspase-8, caspase-9, and caspase-3, suggesting the involvement of death receptor and mitochondrial signaling pathways. In addition, HHV-6A induced secretion of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IL-8, and gamma interferon by peripheral blood mononuclear cells; TNF-α secretion was observed exclusively from CCR7+ (TN plus TCM) CD4+ T cells. These data show that HHV-6 differentially influences the functions of naïve T cells and different subsets of memory CD4+ and CD8+ T cells, which in part may be due to differential susceptibility to HHV-6A-induced apoptosis.


2022 ◽  
Author(s):  
Kathryn C. Fitzgerald ◽  
Pavan Bhargava ◽  
Matthew D. Smith ◽  
Diane Vizthum ◽  
Bobbie Henry-Barron ◽  
...  

Abstract Background: Intermittent fasting or calorie restriction (CR) diets provide anti-inflammatory and neuroprotective advantages in models of multiple sclerosis (MS); data in humans are sparse. Methods: We conducted a randomized-controlled feeding study of different CR diets in 36 people with MS over 8 weeks. Patients were randomized to receive either: a daily CR diet (22% reduction in calories, 7 days/week), an intermittent CR diet (75% reduction, 2 days/week; 100%, 5 days/week), or a weight-stable diet (100%, 7 days/week). Untargeted metabolomics was performed on plasma samples at weeks 0, 4 and 8 at Metabolon Inc (Durham, NC). Flow cytometry of cryopreserved peripheral blood mononuclear cells at weeks 0 and 8 were used to identify CD4+ and CD8+ T cell subsets including effector memory, central memory, and naïve cells. Results: 31 (86%) completed the trial. Over time, individuals randomized to intermittent CR had significant reductions in CD4+CM -4.87%; 95%CI: -8.59%, -1.15%; p=0.01), CD4+EM (-3.82%; 95%CI: -7.44, -0.21; p=0.04), and CD8+EM (-6.96%; 95%CI: -11.96, -1.97; p=0.006) with proportional increases in naïve subsets (CD4+Naïve: 5.81%; 95%CI: -0.01, 11.63%; p=0.05; CD8+Naïve: 10.11%; 95%CI: 3.30, 16.92%; p=0.006). No changes were observed for daily CR or weight-stable diets. Larger within-person changes in lysophospholipid and lysoplasmalogen metabolites in intermittent CR were associated with larger reductions in memory T cell subsets and larger increases in naïve T cell subsets. Conclusions: In people with MS, an intermittent CR diet was associated with reduction in memory T cell subsets. The observed changes may be mediated by changes in specific classes of lipid metabolites. Trial Registration: This study is registered on Clinicaltrials.gov with identifier NCT02647502. Funding: National MS Society, NIH, Johns Hopkins Catalyst Award


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 2560-2560
Author(s):  
D. Diaz ◽  
L. Chara ◽  
J. Chevarria ◽  
V. Navas ◽  
E. Esteban ◽  
...  

2560 Background: IL-2 is a drug that is employed in the treatment of several tumors due to its capacity of restore or increase the regulatory and effector function of the immune system. These effects have been demonstrated with the administration of the drug by intravenous and subcutaneous ways. Recently, it has been observed that the inhaled IL-2 administration is effective in the treatment of lung and renal cell carcinoma metastasis. However, it is unknown if this therapeutic effect is accompanied of systemic and local modulatory effects. Objectives: To compare spontaneous and mitogen-induced apoptosis in lymphocytes of renal carcinoma patients before and after treatment with inhaled IL-2. Methods: Peripheral blood mononuclear cells were purified from 7 patients with renal carcinoma before and after treatment with inhaled IL-2. The cells were characterized in a FACScalibur analyzer using fluorocrome-labeled monoclonal antibodies. The AI (or percentage of apoptotic cells, AI x 100) was calculated for T-cells expressing CD3, CD4, CD8, CD56, HLA-DR, CD25 and CD45RO/CD45RA antigens and NK-cells (CD3-CD56+ or CD3-CD16+). These AI were determined after 24 hours of culture under two conditions: without exogenous apoptosis inducers and in the presence of phytohemagglutinin. Comparisons between patients were carried out using the Wilcoxon test and were considered significant when p < 0.05. Results: A significant decrease in spontaneous ex vivo apoptosis was found in peripheral blood lymphocytes from renal carcinoma patients after treatment with inhaled IL-2 with respect to pretreatment values. This decrease occurred in T-cells and also in CD45RO expressing cells from both CD4+ and CD8+ subsets. A decrease of apoptosis was also observed in CD25+ expressing cells from CD3+, CD4+ and CD8+ subsets. A decrease in AI was found in mitogen induced apoptosis of CD25+ cells from CD3+, CD4+ and CD8+ subsets. Conclusions: The treatment with inhaled IL-2 has immunomodulatory effects that are observed at systemic level reducing the apoptosis of cells from several memory and activated T-cell subsets. No significant financial relationships to disclose.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nirupama D. Verma ◽  
Andrew D. Lam ◽  
Christopher Chiu ◽  
Giang T. Tran ◽  
Bruce M. Hall ◽  
...  

AbstractResting and activated subpopulations of CD4+CD25+CD127loT regulatory cells (Treg) and CD4+CD25+CD127+ effector T cells in MS patients and in healthy individuals were compared. Peripheral blood mononuclear cells isolated using Ficoll Hypaque were stained with monoclonal antibodies and analysed by flow cytometer. CD45RA and Foxp3 expression within CD4+ cells and in CD4+CD25+CD127loT cells identified Population I; CD45RA+Foxp3+, Population II; CD45RA−Foxp3hi and Population III; CD45RA−Foxp3+ cells. Effector CD4+CD127+ T cells were subdivided into Population IV; memory /effector CD45RA− CD25−Foxp3− and Population V; effector naïve CD45RA+CD25−Foxp3−CCR7+ and terminally differentiated RA+ (TEMRA) effector memory cells. Chemokine receptor staining identified CXCR3+Th1-like Treg, CCR6+Th17-like Treg and CCR7+ resting Treg. Resting Treg (Population I) were reduced in MS patients, both in untreated and treated MS compared to healthy donors. Activated/memory Treg (Population II) were significantly increased in MS patients compared to healthy donors. Activated effector CD4+ (Population IV) were increased and the naïve/ TEMRA CD4+ (Population V) were decreased in MS compared to HD. Expression of CCR7 was mainly in Population I, whereas expression of CCR6 and CXCR3 was greatest in Populations II and intermediate in Population III. In MS, CCR6+Treg were lower in Population III. This study found MS is associated with significant shifts in CD4+T cells subpopulations. MS patients had lower resting CD4+CD25+CD45RA+CCR7+ Treg than healthy donors while activated CD4+CD25hiCD45RA−Foxp3hiTreg were increased in MS patients even before treatment. Some MS patients had reduced CCR6+Th17-like Treg, which may contribute to the activity of MS.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nan Xiao ◽  
Meng Nie ◽  
Huanhuan Pang ◽  
Bohong Wang ◽  
Jieli Hu ◽  
...  

AbstractCytokine release syndrome (CRS) is a major cause of the multi-organ injury and fatal outcome induced by SARS-CoV-2 infection in severe COVID-19 patients. Metabolism can modulate the immune responses against infectious diseases, yet our understanding remains limited on how host metabolism correlates with inflammatory responses and affects cytokine release in COVID-19 patients. Here we perform both metabolomics and cytokine/chemokine profiling on serum samples from healthy controls, mild and severe COVID-19 patients, and delineate their global metabolic and immune response landscape. Correlation analyses show tight associations between metabolites and proinflammatory cytokines/chemokines, such as IL-6, M-CSF, IL-1α, IL-1β, and imply a potential regulatory crosstalk between arginine, tryptophan, purine metabolism and hyperinflammation. Importantly, we also demonstrate that targeting metabolism markedly modulates the proinflammatory cytokines release by peripheral blood mononuclear cells isolated from SARS-CoV-2-infected rhesus macaques ex vivo, hinting that exploiting metabolic alterations may be a potential strategy for treating fatal CRS in COVID-19.


2021 ◽  
Author(s):  
Emily Stephenson ◽  
◽  
Gary Reynolds ◽  
Rachel A. Botting ◽  
Fernando J. Calero-Nieto ◽  
...  

AbstractAnalysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassical monocytes expressing complement transcripts (CD16+C1QA/B/C+) that sequester platelets and were predicted to replenish the alveolar macrophage pool in COVID-19. Early, uncommitted CD34+ hematopoietic stem/progenitor cells were primed toward megakaryopoiesis, accompanied by expanded megakaryocyte-committed progenitors and increased platelet activation. Clonally expanded CD8+ T cells and an increased ratio of CD8+ effector T cells to effector memory T cells characterized severe disease, while circulating follicular helper T cells accompanied mild disease. We observed a relative loss of IgA2 in symptomatic disease despite an overall expansion of plasmablasts and plasma cells. Our study highlights the coordinated immune response that contributes to COVID-19 pathogenesis and reveals discrete cellular components that can be targeted for therapy.


Blood ◽  
2008 ◽  
Vol 112 (3) ◽  
pp. 770-781 ◽  
Author(s):  
Mithun Vinod Shah ◽  
Ranran Zhang ◽  
Rosalyn Irby ◽  
Ravi Kothapalli ◽  
Xin Liu ◽  
...  

Abstract T-cell large granular lymphocyte (LGL) leukemia is characterized by clonal expansion of CD3+CD8+ cells. Leukemic LGLs correspond to terminally differentiated effector-memory cytotoxic T lymphocytes (CTLs) that escape Fas-mediated activation-induced cell death (AICD) in vivo. The gene expression signature of peripheral blood mononuclear cells from 30 LGL leukemia patients showed profound dysregulation of expression of apoptotic genes and suggested uncoupling of activation and apoptotic pathways as a mechanism for failure of AICD in leukemic LGLs. Pathway-based microarray analysis indicated that balance of proapoptotic and antiapoptotic sphingolipid-mediated signaling was deregulated in leukemic LGLs. We further investigated sphingolipid pathways and found that acid ceramidase was constitutively overexpressed in leukemic LGLs and that its inhibition induced apoptosis of leukemic LGLs. We also showed that S1P5 is the predominant S1P receptor in leukemic LGLs, whereas S1P1 is down-regulated. FTY720, a functional antagonist of S1P-mediated signaling, induced apoptosis in leukemic LGLs and also sensitized leukemic LGLs to Fas-mediated death. Collectively, these results show a role for sphingolipid-mediated signaling as a mechanism for long-term survival of CTLs. Therapeutic targeting of this pathway, such as use of FTY720, may have efficacy in LGL leukemia.


Sign in / Sign up

Export Citation Format

Share Document