scholarly journals Equilibrium, kinetics and thermodynamic adsorption studies of acid dyes on adsorbent developed from kenaf core fiber

2017 ◽  
Vol 36 (1-2) ◽  
pp. 694-712 ◽  
Author(s):  
Intidhar J Idan ◽  
Luqman C Abdullah ◽  
Thomas SY Choong ◽  
Siti Nurul Ain B Md Jamil

Quaternized kenaf core fiber (QKCF) was used as an adsorbent for adsorption of anionic Acid Blue-25 (AB) and anionic Acid Green-25 (AG) dyes. Chemical treatment with (3-chloro-2-hydroxypropyl) trimethylammonium chloride under basic condition was applied in order to alter the surface properties of the raw kenaf core fiber. Adsorption studies were carried out to delineate the effect of initial dye concentration, temperature and pH on removal of dyes. The results show that the percentage removal of Acid Blue-25 and Acid Green-25 dyes were increased by increasing the concentrations of dyes. In addition, the maximum percentage removal was 99.8% and 99.65% for Acid Blue-25 and Acid Green-25, respectively. Langmuir, Freundlich and Temkin isotherm models were applied to analyze the data for dye adsorption at 15℃, 25℃, 35℃, and 45℃. The experimental data were best represented by the Langmuir model with maximum adsorption capacity of 303.03 mg/g and 344.83 mg/g for Acid Blue-25 and Acid Green-25 dyes, respectively, at 15℃, and the kinetic data for both dyes were best represented by the pseudo-second-order kinetic model. Thermodynamic studies indicated that the reactions of Acid Blue-25 and Acid Green-25 dyes were endothermic. It was concluded that QKCF adsorbent can be utilized as an efficient low-cost adsorbent for removal of anionic dyes.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Maytham Kadhim Obaid ◽  
Luqman Chuah Abdullah ◽  
Intidhar Jabir Idan

Evaluated removal of reactive orange 16 (RO16) dye from aqueous solution was studied in batch mode by using kenaf core fiber as low-cost adsorbents. In this attempt, kenaf core fiber with size 0.25–1 mm was treated by using (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHMAC) as quaternization agent. Then effective parameters include adsorbent dose, pH, and contact time and initial dye concentration on adsorption by modified kenaf core fiber was investigated. In addition, isotherms and kinetics adsorption studies were estimated for determination of the equilibrium adsorption capacity and reactions dynamics, respectively. Results showed that the best dose of MKCF was 0.1 g/100 mL, the maximum removal of RO16 was 97.25 at 30°C, pH = 6.5, and agitation speed was 150 rpm. The results also showed that the equilibrium data were represented by Freundlich isotherm with correlation coefficientsR2=0.9924, and the kinetic study followed the pseudo-second-order kinetic model with correlation coefficientsR2=0.9997forCo=100 mg/L. Furthermore, the maximum adsorption capacity was 416.86 mg/g. Adsorption through kenaf was found to be very effective for the removal of the RO16 dye.


1992 ◽  
Vol 9 (3) ◽  
pp. 121-129 ◽  
Author(s):  
Mohammad S. El-Geundi ◽  
Ibrahim H. Aly

The adsorption of acid dyestuffs in solution onto maize cob has been investigated. Equilibrium isotherms have been determined for the adsopriton of Acid Blue 25 (AB 25) and Acid Red 114 (AR 114) onto maize cob. The L-shaped adsorption isotherms suggest that adsorption proceeds through ionic bonding and that the dye molecules are adsorbed in a flatwise manner on the surface of the maize cob particles. The maximum adsorption capacity of the maize cob was found to be 47.7 and 41.4 mg dye per g maize cob for AR 114 and AB 25, respectively.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Intidhar Jabir Idan ◽  
Siti Nurul Ain Binti Md. Jamil ◽  
Luqman Chuah Abdullah ◽  
Thomas Shean Yaw Choong

The most challenging mission in wastewater treatment plants is the removal of anionic dyes, because they are water-soluble and produce very shining colours in the water. In this regard, kenaf core fiber (KCF) was chemically modified by the quaternized agent (3-chloro-2-hydroxypropyl)trimethylammonium chloride to increase surface area and change the surface properties in order to improve the removing reactive anionic dyes from binary aqueous solution. The influencing operating factors like dye concentration, pH, adsorbent dosage, and contact time were examined in a batch mode. The results indicate that the percentage of removal of Reactive Red-RB (RR-RB) and Reactive Black-5 (RB-5) dyes from binary solution was increased with increasing dyes concentrations and the maximum percentage of removal reached up to 98.4% and 99.9% for RR-RB and RB-5, respectively. Studies on effect of pH showed that the adsorption was not significantly influenced by pH. The equilibrium analyses explain that, in spite of the extended Langmuir model failure to describe the data in the binary system, it is better than the Jain and Snoeyink model in describing the adsorption behavior of binary dyes onto QKCF. Also, the pseudo-second-order model was better to represent the adsorption kinetics for RR-RB and RB-5 dyes on QKCF.


2018 ◽  
Vol 8 (2) ◽  
Author(s):  
Muhammad Raziq Rahimi Kooh ◽  
Muhammad Khairud Dahri ◽  
Linda B. L. Lim ◽  
Lee Hoon Lim ◽  
Chin Mei Chan

2015 ◽  
Vol 41 (7) ◽  
pp. 2453-2464 ◽  
Author(s):  
Muhammad Raziq Rahimi Kooh ◽  
Muhammad Khairud Dahri ◽  
Linda B. L. Lim ◽  
Lee Hoon Lim

Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 175
Author(s):  
Sang-Eun Jo ◽  
Jung-Weon Choi ◽  
Sang-June Choi

Mag@silica-Ag composite has a high sorption ability for I− in aqueous solution due to its high surface area and strong affinity for the studied anion. The material adsorbed I− rapidly during the initial contact time (in 45 min, η = 80%) and reached adsorption equilibrium after 2 h. Moreover, mag@silica-Ag proved to selectively remove I− from a mixture of Cl−, NO3− and I−. The adsorption behavior fitted the Langmuir isotherm perfectly and the pseudo-second-order kinetic model. Based on the Langmuir isotherm, the maximum adsorption capacity of mag@silica-Ag was 0.82 mmol/g, which is significantly higher than previously developed adsorbents. This study introduces a practical application of a high-capacity adsorbent in removing radioactive I− from wastewaters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yige Guo ◽  
Bin Chen ◽  
Ying Zhao ◽  
Tianxue Yang

AbstractAntibiotics are emerging pollutants and increasingly present in aquaculture and industrial wastewater. Due to their impact on the environment and health, their removal has recently become a significant concern. In this investigation, we synthesized nano zero-valent iron-loaded magnetic mesoporous silica (Fe-MCM-41-A) via precipitation and applied the adsorption of oxytetracycline (OTC) from an aqueous solution. The effects of competing ions such as Na+, Ca2+ and Cu2+ on the adsorption process under different pH conditions were studied in depth to providing a theoretical basis for the application of nanomaterials. The characterization of the obtained material through transmission electron microscopy demonstrates that the adsorbent possesses hexagonal channels, which facilitate mass transfer during adsorption. The loaded zero-valent iron made the magnetic, and was thus separated under an applied magnetic field. The adsorption of OTC onto Fe-MCM-41-A is rapid and obeys the pseudo-second-order kinetic model, and the maximum adsorption capacity of OTC is 625.90 mg g−1. The reaction between OTC and Fe-MCM-41-A was inner complexation and was less affected by the Na+. The effect of Ca2+ on the adsorption was small under acidic and neutral conditions. However, the promotion effect of Ca2+ increased by the increase of pH. Cu2+ decreased the removal efficiencies continuously and the inhibitory effects decrease varied with the increase of pH. We propose that surface complexing, ion-exchange, cationic π-bonding, hydrogen bonding, and hydrophobicity are responsible for the adsorption of OTC onto Fe-MCM-41-A.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2682
Author(s):  
Gyuhyeon Kim ◽  
Young-Mo Kim ◽  
Su-Min Kim ◽  
Hyun-Uk Cho ◽  
Jong-Moon Park

In this study, magnetic steel slag biochar (MSSB) was synthesized from low-cost steel slag waste to investigate the effectiveness of steel slag biochar composite for NH4-N removal and magnetic properties in aqueous solution. The maximum adsorption capacity of NH4-N by MSSB was 4.366 mg/g according to the Langmuir model. The magnetic properties of MSSB indicated paramagnetic behavior and a saturation magnetic moment of 2.30 emu/g at 2 Tesla. The NH4-N adsorption process was well characterized by the pseudo-second order kinetic model and Temkin isotherm model. This study demonstrated the potential of magnetic biochar synthesized from steel slag waste for NH4-N removal in aqueous solution.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Prasanna Kumarathilaka ◽  
Vimukthi Jayaweera ◽  
Hasintha Wijesekara ◽  
I. R. M. Kottegoda ◽  
S. R. D. Rosa ◽  
...  

Embedding nanoparticles into an inert material like graphene is a viable option since hybrid materials are more capable than those based on pure nanoparticulates for the removal of toxic pollutants. This study reports for the first time on Cr(VI) removal capacity of novel starch stabilized nanozero valent iron-graphene composite (NZVI-Gn) under different pHs, contact time, and initial concentrations. Starch coated NZVI-Gn composite was developed through borohydrate reduction method. The structure and surface of the composite were characterized by scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and point of zero charge (pHpzc). The surface area and pHpzc of NZVI-Gn composite were reported as 525 m2 g−1 and 8.5, respectively. Highest Cr(VI) removal was achieved at pH 3, whereas 67.3% was removed within first few minutes and reached its equilibrium within 20 min obeying pseudo-second-order kinetic model, suggesting chemisorption as the rate limiting process. The partitioning of Cr(VI) at equilibrium is perfectly matched with Langmuir isotherm and maximum adsorption capacity of the NZVI-Gn composite is 143.28 mg g−1. Overall, these findings indicated that NZVI-Gn composite could be utilized as an efficient and magnetically separable adsorbent for removal of Cr(VI).


Sign in / Sign up

Export Citation Format

Share Document