scholarly journals Adsorption of U(VI) ions from aqueous solution using nanogoethite powder

2018 ◽  
Vol 37 (1-2) ◽  
pp. 113-126 ◽  
Author(s):  
Lijiang Zhang ◽  
Xiaowen Zhang ◽  
Qian Lu ◽  
Xiaoyan Wu ◽  
Tianjiao Jiang ◽  
...  

Goethite is a stable and widespread mineral present in soil with many uses, and it affects the transportation and immobilization of heavy metals in solution. Nanogoethite was synthesized by a chemical precipitation method and used to batch adsorb U(VI) in solution. Adsorption experiments were used to understand the role of nanogoethite in controlling the U(VI) adsorption behavior in soil. The morphology and the crystallinity of nanogoethite were characterized by scanning electron microscopy and wide-angle X-ray powder diffractometry, respectively. The results showed that the crystallinity of nanogoethite after the adsorption of uranium did not change, but small particles appeared on the surface of the scales. The surface area was determined from N2 adsorption–desorption experiments using the Brunauer–Emmett–Teller to be 81.86 m2/g. The effects of factors such as the contact time, pH, adsorbent dosage, and the initial concentration of uranium on the adsorption of U(VI) were investigated. The experimental results showed that nanogoethite removed over 85% of the U(VI) in an aqueous 5.0 mg/L U(VI) solution at pH 4.0 and at 298 K. The pseudo-second-order model was used to simulate the adsorption process. The results show that chemisorption plays a major role in the adsorption process. The results of this study suggest that nanogoethite may play a significant role in controlling the migration and transfer of U(VI) in the soil, thus controlling the presence of U(VI) in soil.

2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


2019 ◽  
Vol 80 (7) ◽  
pp. 1357-1366
Author(s):  
Jianming Liu ◽  
Runying Bai ◽  
Junfeng Hao ◽  
Bowen Song ◽  
Yu Zhang ◽  
...  

Abstract This study investigated a magnetically recycled modified polishing powder (CMIO@PP) as an adsorbent of phosphate; the CMIO@PP was synthesized by combining the modified La/Ce-containing waste polishing powder with CaO2-modified Fe3O4 (CMIO). Results indicate that the CMIO@PP nanocomposite presents a crystal structure comprising La (OH)3, Ce (OH)3, and Fe3O4, and that CMIO is uniformly dispersed in the modified polishing powder. The CMIO@PP (1:3) is a suitable choice considering its magnetism and adsorption capacity. The magnetic adsorbent exhibits a high adsorption capacity of 53.72 mg/g, a short equilibrium time of 60 min, and superior selectivity for phosphate. Moreover, the adsorbent strongly depends on the pH during the adsorption process and maintains a large adsorption capacity when the pH level is between 2 and 6. The adsorption of phosphate by the CMIO@PP (1:3) accords with the Langmuir isotherm model, and the adsorption process follows the pseudo-second order model. Meanwhile, adsorption–desorption experiments show that the adsorbent could be recycled a few times and that a high removal efficiency of phosphate from civil wastewater was achieved. Finally, mechanisms show that the adsorption of phosphate by the CMIO@PP (1:3) is mainly caused by electrostatic attraction and ligand exchange.


2017 ◽  
Vol 75 (7) ◽  
pp. 1651-1658 ◽  
Author(s):  
Hongyu Jia ◽  
Ningning Liu

Nanoporous polydivinylbenzene (PDVB) material has been successfully prepared via the copolymerization of divinylbenzene monomers. The nanoporous PDVB was characterized through N2 adsorption/desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The nanoporous PDVB as an adsorbent was applied for the removal of Rhodamine B (RhB). The adsorption behavior of PDVB for the removal of RhB showed that the isotherm data followed the Langmuir isotherm model and the kinetic adsorption obeyed the pseudo-second-order model. Thermodynamic parameters illustrated that the adsorption process was spontaneous and exothermic. Interestingly, the spent nanoporous PDVB has excellent regenerative performance through treating it with ethanol. These results revealed that PDVB might be an excellent adsorbent for the removal of RhB from wastewater.


2021 ◽  
Vol 12 (4) ◽  
pp. 4584-4596

The activated carbon investigated in this work was produced from the extractive residues of Brazil nut processing, more specifically from the mesocarp of the Amazonian fruit. The process was performed by muffle pyrolysis, with ZnCl2 impregnation, at 400 and 500 °C. All samples were characterized by X-ray diffractometry, thermogravimetry, CHNS elemental analysis, scanning electron microscopy, and adsorption/desorption of N2. The results were promissory, with 99% removal of methylene blue for the CA25 material, which has a surface area of 1236 m2 g-1, much higher than commercial coal (CAC, 618 m2 g-1). The adsorption kinetics best fit the pseudo-second-order model for all materials. The maximum adsorption capacity obtained was 195.3 mg g-1. Therefore, the extractive residue of Brazil nut has excellent potential for the development of activated carbon, which can be used effectively to mediate environmental contamination in a given aqueous medium.


2015 ◽  
Vol 73 (6) ◽  
pp. 1269-1278 ◽  
Author(s):  
Hejun Gao ◽  
Luanluan Zhang ◽  
Yunwen Liao

A novel adsorbent consisting of polyethyleneimine-modified multi-wall carbon nanotubes (PEI-MWCNTs) was synthesized by grafting PEI on the carboxyl MWCNTs. The surface properties of the PEI-MWCNTs were measured by scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared, and zeta potential. The adsorption behavior of the PEI-MWCNTs was investigated using sunset yellow FCF as adsorbate. The effects of dosage of adsorbent, the initial pH of solution, contact time and temperature on the adsorption capacity were studied. Then, the kinetics and thermodynamics of the adsorption process were further investigated. Experimental results showed that the adsorption kinetics fitted a pseudo-second-order model and the adsorption isotherms agreed well with the Langmuir model. The adsorption process occurred very fast and the adsorption capacity of PEI-MWCNTs was much higher than that of many of the previously reported adsorbents. Additionally, the plausible adsorption mechanism was discussed.


2016 ◽  
Vol 88 (12) ◽  
pp. 1143-1154
Author(s):  
Andreea Gabor ◽  
Corneliu Mircea Davidescu ◽  
Adina Negrea ◽  
Mihaela Ciopec ◽  
Cornelia Muntean ◽  
...  

Abstract This paper presents the sorption properties of a new adsorbent material prepared by impregnating Amberlite XAD 7 polymer with sodium β-glycerophosphate. For impregnation, the pellicular vacuum solvent vaporization method was employed. The functionalization was evidenced by energy dispersive X-ray analysis. The usefulness of this material and its performances were studied for the adsorption of the rare earth element La(III) in batch experiments. The influence of various parameters affecting the adsorption of lanthanum like contact time, initial concentration, pH value, and temperature was studied. The kinetic of the adsorption process was best described by the pseudo-second-order model. Sips isotherm was found to be the best fit of the equilibrium data. The maximum adsorption capacity of the functionalized material was of 33.8 mg La(III)/g. The values of thermodynamic parameters (ΔGo, ΔHo, ΔSo) showed that the adsorption process was endothermic and spontaneous. The results proved that Amberlite XAD 7 functionalized with sodium β-glycerophosphate is an efficient adsorbent for the removal of La(III) ions from aqueous solutions. Quantum chemistry was performed using Spartan software.


2015 ◽  
Vol 73 (6) ◽  
pp. 1463-1471 ◽  
Author(s):  
Zhang Yanzhuo ◽  
Li Jun ◽  
Chen Guanghui ◽  
Bian Wei ◽  
Lu Yun ◽  
...  

The high colority and difficulty of decolorization are the most important tasks on printing and dyeing wastewater. This study investigates the ability of diatomite earth&carbon (DE&C) as an adsorbent to removal crystal violet (CV) from aqueous solutions. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of CV. The obtained N2 adsorption–desorption isotherm values accord with well IUPAC type II. Our calculations determined a surface area of 73.15 m2 g−1 for DE&C and an average pore diameter of 10.56 nm. Equilibrium data of the adsorption process fitted very well to the Langmuir model (R2 > 0.99). The results of kinetics study showed that the pseudo-second-order model fitted to the experimental data well. The thermodynamic parameters were also evaluated. ΔH° <0, ΔS° > 0 and ΔG° < 0 demonstrated that the adsorption process was spontaneous and exothermic for dye. Furthermore the positive value of ΔS° reflected good affinity of the CV dye.


2012 ◽  
Vol 549 ◽  
pp. 362-365 ◽  
Author(s):  
Ying Hua Song ◽  
Sheng Ming Chen ◽  
Jian Min Ren ◽  
Yuan Gao ◽  
Hui Xu

The adsorption of fuchsine by peanut husk, which was crosslinked by epichlorohydrin was studied with variation in the parameters of contact time, pH, initial fuchsine concentration and temperature. They were used for equilibrium adsorption uptake studies with fuchsine. The results indicate that adsorption equilibrium could be well described by both the Langmuir and the Freundlich isotherm equation. The adsorption followed the pseudo-second order model. The thermodynamic constants of the adsorption process were also evaluated, which suggest an endothermic adsorption process which runs spontaneously.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 898
Author(s):  
Ximena Jaramillo-Fierro ◽  
Silvia González ◽  
Fernando Montesdeoca-Mendoza ◽  
Francesc Medina

Adsorption is an effective method of removing harmful pollutants from air and water. In the present study, zeolites prepared by sol-gel method from two Ecuadorian clays were combined with precursor clays and the ZnTiO3/TiO2 semiconductor for adsorbing methylene blue (MB) as a water contaminant. The synthesized compounds were characterized using powder X-ray diffraction, X-ray fluorescence, scanning electron microscopy, energy dispersive X-ray, and surface area measurement. These compounds were combined to form cylindrical extrudates of 0.2 cm (diameter) and 1.0 cm (length). The adsorption characteristics of the composites were measured using batch sorption studies as a function of pH, initial concentration, and contact time. The pseudo-second-order model and the Langmuir isotherm model were better suited to the adsorption process. The equilibrium state was achieved around 180 min of adsorption, and a pH of 7 was established as the optimal operating condition. The maximum adsorption values of the dye were obtained with the composites derived from G-Clay, whose average adsorption capacity was 46.36 mg g−1, in contrast with composites derived from R-Clay, whose average adsorption value was 36.24 mg g−1. The results reflect that synthesized composites could be used potentially for the removal of cationic dye from wastewater.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1519
Author(s):  
Zhuo Wang ◽  
Ha Neul Park ◽  
Sung Wook Won

In this study, the optimal conditions for the fabrication of polyethylenimine/polyvinyl chloride cross-linked fiber (PEI/PVC-CF) were determined by comparing the adsorption capacity of synthesized PEI/PVC-CFs for Reactive Yellow 2 (RY2). The PEI/PVC-CF prepared through the optimal conditions was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) analyses. Several batch adsorption and desorption experiments were carried out to evaluate the sorption performance and reusability of PEI/PVC-CF for RY2. As a result, the adsorption of RY2 by PEI/PVC-CF was most effective at pH 2.0. A pseudo-second-order model fit better with the kinetics adsorption data. The adsorption isotherm process was described well by the Langmuir model, and the maximum dye uptake was predicted to be 820.6 mg/g at pH 2.0 and 25 °C. Thermodynamic analysis showed that the adsorption process was spontaneous and endothermic. In addition, 1.0 M NaHCO3 was an efficient eluent for the regeneration of RY2-loaded PEI/PVC-CF. Finally, the repeated adsorption–desorption experiments showed that the PEI/PVC-CF remained at high adsorption and desorption efficiencies for RY2, even in 17 cycles.


Sign in / Sign up

Export Citation Format

Share Document