scholarly journals Brasil nut mesocarp (Bertholletia excels) as a Biomass Source for Activated Carbon Production: Correlation Between Thermal Treatment and Adsorption Performance

2021 ◽  
Vol 12 (4) ◽  
pp. 4584-4596

The activated carbon investigated in this work was produced from the extractive residues of Brazil nut processing, more specifically from the mesocarp of the Amazonian fruit. The process was performed by muffle pyrolysis, with ZnCl2 impregnation, at 400 and 500 °C. All samples were characterized by X-ray diffractometry, thermogravimetry, CHNS elemental analysis, scanning electron microscopy, and adsorption/desorption of N2. The results were promissory, with 99% removal of methylene blue for the CA25 material, which has a surface area of 1236 m2 g-1, much higher than commercial coal (CAC, 618 m2 g-1). The adsorption kinetics best fit the pseudo-second-order model for all materials. The maximum adsorption capacity obtained was 195.3 mg g-1. Therefore, the extractive residue of Brazil nut has excellent potential for the development of activated carbon, which can be used effectively to mediate environmental contamination in a given aqueous medium.

2016 ◽  
Vol 88 (12) ◽  
pp. 1143-1154
Author(s):  
Andreea Gabor ◽  
Corneliu Mircea Davidescu ◽  
Adina Negrea ◽  
Mihaela Ciopec ◽  
Cornelia Muntean ◽  
...  

Abstract This paper presents the sorption properties of a new adsorbent material prepared by impregnating Amberlite XAD 7 polymer with sodium β-glycerophosphate. For impregnation, the pellicular vacuum solvent vaporization method was employed. The functionalization was evidenced by energy dispersive X-ray analysis. The usefulness of this material and its performances were studied for the adsorption of the rare earth element La(III) in batch experiments. The influence of various parameters affecting the adsorption of lanthanum like contact time, initial concentration, pH value, and temperature was studied. The kinetic of the adsorption process was best described by the pseudo-second-order model. Sips isotherm was found to be the best fit of the equilibrium data. The maximum adsorption capacity of the functionalized material was of 33.8 mg La(III)/g. The values of thermodynamic parameters (ΔGo, ΔHo, ΔSo) showed that the adsorption process was endothermic and spontaneous. The results proved that Amberlite XAD 7 functionalized with sodium β-glycerophosphate is an efficient adsorbent for the removal of La(III) ions from aqueous solutions. Quantum chemistry was performed using Spartan software.


Toxins ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 466
Author(s):  
Usman Rasheed ◽  
Qurat Ul Ain ◽  
Muhammad Yaseen ◽  
Sayantan Santra ◽  
Xiaohua Yao ◽  
...  

Blueberry (BB) and cherry pomace were investigated as new biosorbents for aflatoxins (AFs) sequestration from buffered solutions, gastrointestinal fluids and model wine. Among the tested biosorbents, BB exhibited the maximum adsorption performance for AFs and hence was further selected for the optimization of experimental parameters like pH, dosage, time and initial concentration of AFs. Material characterizations via scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, N2 adsorption-desorption isothermal studies, thermogravimetric analysis (TGA) and X-ray photon spectroscopy (XPS) techniques revealed useful information about the texture and chemical composition of the biosorbents. The fitting of isothermal data with different models showed the model suitability trend as: Sips model > Langmuir model > Freundlich model, where the theoretical maximum adsorption capacity calculated from the Sips model was 4.6, 2.9, 2.7 and 2.4 mg/g for AFB1, AFB2, AFG1 and AFG2, respectively. Kinetics study revealed the fast AFs uptake by BB (50–90 min) while thermodynamics studies suggested the exothermic nature of the AFs adsorption from both, single as well as multi-toxin buffer systems, gastrointestinal fluids and model wine. Accrediting to the fast and efficient adsorption performance, green and facile fabrication approach and cost-effectiveness, the newly designed BB pomace can be counted as a promising contender for the sequestration of AFs and other organic pollutants.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1242
Author(s):  
Hanedi Elhleli ◽  
Faten Mannai ◽  
Mongi ben Mosbah ◽  
Ramzi Khiari ◽  
Younes Moussaoui

Activated carbon obtained from Opuntia ficus indica by sodium hydroxide activation was employed for the adsorption of p-nitrophenol from water. The activated carbons obtained were characterized by Fourier transforms infrared spectroscopy, sorption of nitrogen, scanning electron microscopy, and Boehm titration. Effects of pH, contact time, amount of adsorbent, and temperature on the adsorption of p-nitrophenol were studied. Adsorption isotherms were analyzed using Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich models, and the thermodynamic parameters have been determined. The adsorption of p-nitrophenol was spontaneous, exothermic, and propitious at 15 °C and adopted the pseudo-second order model, and the most credible isotherm was Langmuir’s one. The activated carbon used in this work has good p-nitrophenol adsorption characteristics, and the study of the desorption and reuse of this carbon shows that it retains a removal rate greater than 94% after five cycles of adsorption-desorption.


2020 ◽  
Vol 7 (3) ◽  
pp. 191811
Author(s):  
Yazhen Wang ◽  
Shuang Li ◽  
Liqun Ma ◽  
Shaobo Dong ◽  
Li Liu

Corn stalk was used as the initial material to prepare a corn stalk matrix-g-polyacrylonitrile-based adsorbent. At first, the corn stalk was treated with potassium hydroxide and nitric acid to obtain the corn stalk-based cellulose (CS), and then the CS was modified by 2-bromoisobutyrylbromide (2-BiBBr) to prepare a macroinitiator. After that, polyacrylonitrile (PAN) was grafted onto the macroinitiator by single-electron transfer living radical polymerization (SET-LRP). A novel adsorbent AO CS-g-PAN was, therefore, obtained by introducing amidoxime groups onto the CS-g-PAN with hydroxylamine hydrochloride (NH 2 OH · HCl). FTIR, SEM and XPS were applied to characterize the structure of AO CS-g-PAN. The adsorbent was then employed to remove Pb(II) and Cu(II), and it exhibited a predominant adsorption performance on Pb(II) and Cu(II). The effect of parameters, such as temperature, adsorption time, pH and the initial concentration of metal ions on adsorption capacity, were examined in detail during its application. Results suggest that the maximum adsorption capacity of Pb(II) and Cu(II) was 231.84 mg g –1 and 94.72 mg g −1 , and the corresponding removal efficiency was 72.03% and 63%, respectively. The pseudo-second order model was more suitable to depict the adsorption process. And the adsorption isotherm of Cu(II) accorded with the Langmuir model, while the Pb(II) conformed better to the Freundlich isotherm model.


2014 ◽  
Vol 775-776 ◽  
pp. 749-754
Author(s):  
Mirna Sales Loiola Rosa ◽  
Marcos Pereira Silva ◽  
Alan Icaro Morais ◽  
Maria Rita de Morais Chaves Santos ◽  
Edson Cavalcanti Silva Filho ◽  
...  

The disposal of textile waste in water bodies is exacerbating environmental problems, which led scientists to seek natural materials to develop more sustainable ways. Searching for low cost materials was used to remove the dye in two cellulosic sources (filter papers of different brands). The papers were characterized by XRD which confirmed crystallographic profile similar to cellulose. With the aim of optimizing the best conditions, various tests were performed, where the ideal time was 180 minutes for the paper 1 and 240 minutes for the second paper, both by adjusting the pseudo second-order model. The other parameters studied was the pH, adsorbate-adsorbent systems which have maximum adsorption capacity of 2.76 mg / g at pH 2.02 and 2 mg / g at pH 11 for the paper 1 and 10.57 mg / g pH 4 and 2 mg / g at pH 11 for the paper 2. Both adsorbents had the best fit to the Langmuir model in pHs 2 and 11 at the temperature of 298 K.


2021 ◽  
Vol 18 (24) ◽  
pp. 1431
Author(s):  
Devarapalli Venkata Padma ◽  
Susarla Venkata Ananta Rama Sastry

The effectiveness and efficacy of Mallet Flower Leaf Powder (MFLP) as a bio-sorbent for the removal of heavy metal copper ions from the aqueous solutions have been studied. Experiments were conducted varying the pH, agitation time, temperature, biosorbent size and dosage as parameters. Speed of the mixing is kept at 200 rpm. The analysis of copper was done by using Atomic Absorption Spectrophotometer (AAS). The adsorption of copper was found to be dependent on pH and a maximum removal of 98.78 % was obtained at an optimum pH of 6.0. The optimum biosorbent dosage was 1 g for an agitation time of 40 min. The biosorption data obtained were validated for the best isotherm. The data collected were verified with the available adsorption isotherms. Experimental data obtained was well represented by Langmuir (RL = 0.161, qm = 5.96 mg/g, R2 = 0.9142), Freundlich (n = 0.64, Kf  = 0.79L/g, R2 = 0.9995) and Tempkin (R2 = 0.9083, bT = 267.63) isotherms, indicating favorable biosorption. The experimental data obtained were tested for the best fit and the Freundlich Model has yielded the best correlation with the highest regression coefficient, R2 = 0.9844. Kinetic data has also been presented using thermodynamic analysis and the pseudo second order model was found to be the best fit with a correlation coefficient of 0.999. For the removal of copper from the solution, bioadsorbent showed a maximum adsorption capacity of 5.96 mg/g. HIGHLIGHTS Removal of divalent copper from the aqueous solution using Mallet Flower Leaf powder Atomic Absorption Spectroscopy, Scanning Electron Microscopy and Fourier transform infrared analysis were used to characterize the Mallet Flower Leaf Powder Kinetic data has been presented using thermodynamic analysis and the pseudo second order model was found to be the best fit with a correlation coefficient of 0.999 The maximum adsorption capacity of MFLP for copper was found to be 5.96 mg/gm GRAPHICAL ABSTRACT


TAPPI Journal ◽  
2019 ◽  
Vol 18 (01) ◽  
pp. 9-18
Author(s):  
Dafeng Zheng ◽  
Yingzhi Ma ◽  
Xueqing Qiu ◽  
Xuejun Pan

The adsorption behavior of Cu(II) and Cd(II) onto a magnetic lignin-based nanomaterial (MLN) was investigated in detail. The results showed that the adsorption isotherm was better described by the Langmuir model, showing monolayer adsorption with a maximum adsorption capacity of 135.7 and 156.5 mg/g. The kinetics fit the pseudo-second-order model. The thermodynamics showed the enthalpy change of the adsorption for Cu(II) and Cd(II) was 24.12 and 36.49 kJ/mol, with entropy change of 85.12 and 130.3 J/mol·K, respectively; thus, the adsorption was endothermic and spontaneous in the range of 25°C–45°C. Additionally, the adsorbent was easy to regenerate. This study shows that MLN is a capable, sustainable absorbent for the removal of heavy metals.


2013 ◽  
Vol 19 (2) ◽  
pp. 195-212 ◽  
Author(s):  
S. Suresh ◽  
V.C. Srivastava ◽  
I.M. Mishra

The present paper reports kinetic studies of the adsorption of aniline (AN), phenol (P), 4-chlorophenol (CP) and 4-nitrophenol (NP) from aqueous solution onto granular activated carbon (GAC). In FTIR spectral analysis, the transmittance of the peaks gets increased after the loading of AN, P, CP and NP signifying the participation of these functional groups in the adsorption and it seems that the adsorption of AN, P, CP and NP is chemisorptive in nature. The rates of adsorption were found to obey a pseudo-second order model and that the dynamics of AN, P, CP and NP adsorption are controlled by a combination of surface and pore diffusion. The diffusion coefficient were of the order of 10-10 m2 s-1. Thermal desorption at 623 K was found to be more effective than solvent desorption. GAC performed well for at least five adsorption-desorption cycle, with continuous decrease in adsorption efficiency after each thermal desorption. Owing to its relative high heating value, the spent GAC can be used as co-fuel for the production of heat in a boiler or a furnace.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2453
Author(s):  
Ri-si Wang ◽  
Ya Li ◽  
Xi-xiang Shuai ◽  
Rui-hong Liang ◽  
Jun Chen ◽  
...  

The development of effective heavy metal adsorbents has always been the goal of environmentalists. Pectin/activated carbon microspheres (P/ACs) were prepared through simple gelation without chemical crosslinking and utilized for adsorption of Pb2+. Scanning electron microscopy (SEM) revealed that the addition of activated carbon increased the porosity of the microsphere. Texture profile analysis showed good mechanical strength of P/ACs compared with original pectin microspheres. Kinetic studies found that the adsorption process followed a pseudo-second-order model, and the adsorption rate was controlled by film diffusion. Adsorption isotherms were described well by a Langmuir isotherm model, and the maximum adsorption capacity was estimated to be 279.33 mg/g. The P/ACs with the highest activated carbon (P/AC2:3) maintained a removal rate over 95.5% after 10 adsorption/desorption cycles. SEM-energy-dispersive X-ray spectrum and XPS analysis suggested a potential mechanism of adsorption are ion exchange between Pb2+ and Ca2+, electronic adsorption, formation of complexes, and physical adsorption of P/ACs. All the above results indicated the P/ACs may be a good candidate for the adsorption of Pb2+.


2015 ◽  
Vol 52 (3) ◽  
pp. 187-195 ◽  
Author(s):  
Zhenyu Wu ◽  
Dasheng Gao ◽  
Ningning Liu

An anion-functionalized nanoporous polymer was successfully prepared by quaternary ammonization and anion-exchange treatment method. The polymer was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, N2 adsorption/desorption isotherms and thermogravimetric analysis. Batch experiments were conducted to investigate the adsorption behavior of phosphate on the polymer. The results indicated that the experimental equilibrium data can be well described by the Langmuir model. The maximum adsorption capacity determined from the Langmuir model was 4.92 mg g−1. For kinetic study, the adsorption behavior followed the pseudo-second-order model. Thermodynamic studies indicated that the adsorption process was spontaneous and exothermic.


Sign in / Sign up

Export Citation Format

Share Document