scholarly journals Short-term interval training alters brain glucose metabolism in subjects with insulin resistance

2017 ◽  
Vol 38 (10) ◽  
pp. 1828-1838 ◽  
Author(s):  
Sanna M Honkala ◽  
Jarkko Johansson ◽  
Kumail K Motiani ◽  
Jari-Joonas Eskelinen ◽  
Kirsi A Virtanen ◽  
...  

Brain insulin-stimulated glucose uptake (GU) is increased in obese and insulin resistant subjects but normalizes after weight loss along with improved whole-body insulin sensitivity. Our aim was to study whether short-term exercise training (moderate intensity continuous training (MICT) or sprint interval training (SIT)) alters substrates for brain energy metabolism in insulin resistance. Sedentary subjects ( n = 21, BMI 23.7–34.3 kg/m2, age 43–55 y) with insulin resistance were randomized into MICT ( n = 11, intensity≥60% of VO2peak) or SIT ( n = 10, all-out) groups for a two-week training intervention. Brain GU during insulin stimulation and fasting brain free fatty acid uptake (FAU) was measured using PET. At baseline, brain GU was positively associated with the fasting insulin level and negatively with the whole-body insulin sensitivity. The whole-body insulin sensitivity improved with both training modes (20%, p = 0.007), while only SIT led to an increase in aerobic capacity (5%, p = 0.03). SIT also reduced insulin-stimulated brain GU both in global cortical grey matter uptake (12%, p = 0.03) and in specific regions ( p < 0.05, all areas except the occipital cortex), whereas no changes were observed after MICT. Brain FAU remained unchanged after the training in both groups. These findings show that short-term SIT effectively decreases insulin-stimulated brain GU in sedentary subjects with insulin resistance.

2017 ◽  
Vol 122 (5) ◽  
pp. 1188-1197 ◽  
Author(s):  
Kumail K. Motiani ◽  
Anna M. Savolainen ◽  
Jari-Joonas Eskelinen ◽  
Jussi Toivanen ◽  
Tamiko Ishizu ◽  
...  

Similar to muscles, the intestine is also insulin resistant in obese subjects and subjects with impaired glucose tolerance. Exercise training improves muscle insulin sensitivity, but its effects on intestinal metabolism are not known. We studied the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on intestinal glucose and free fatty acid uptake from circulation in humans. Twenty-eight healthy, middle-aged, sedentary men were randomized for 2 wk of HIIT or MICT. Intestinal insulin-stimulated glucose uptake and fasting free fatty acid uptake from circulation were measured using positron emission tomography and [18F]FDG and [18F]FTHA. In addition, effects of HIIT and MICT on intestinal GLUT2 and CD36 protein expression were studied in rats. Training improved aerobic capacity ( P = 0.001) and whole body insulin sensitivity ( P = 0.04), but not differently between HIIT and MICT. Insulin-stimulated glucose uptake increased only after the MICT in the colon (HIIT = 0%; MICT = 37%) ( P = 0.02 for time × training) and tended to increase in the jejunum (HIIT = −4%; MICT = 13%) ( P = 0.08 for time × training). Fasting free fatty acid uptake decreased in the duodenum in both groups (HIIT = −6%; MICT = −48%) ( P = 0.001 time) and tended to decrease in the colon in the MICT group (HIIT = 0%; MICT = −38%) ( P = 0.08 for time × training). In rats, both training groups had higher GLUT2 and CD36 expression compared with control animals. This study shows that already 2 wk of MICT enhances insulin-stimulated glucose uptake, while both training modes reduce fasting free fatty acid uptake in the intestine in healthy, middle-aged men, providing an additional mechanism by which exercise training can improve whole body metabolism. NEW & NOTEWORTHY This is the first study where the effects of exercise training on the intestinal substrate uptake have been investigated using the most advanced techniques available. We also show the importance of exercise intensity in inducing these changes.


2019 ◽  
Vol 126 (6) ◽  
pp. 1756-1768 ◽  
Author(s):  
Kumail K. Motiani ◽  
Anna M. Savolainen ◽  
Jussi Toivanen ◽  
Jari-Joonas Eskelinen ◽  
Minna Yli-Karjanmaa ◽  
...  

Type 2 diabetes (T2D) and increased liver fat content (LFC) alter lipoprotein profile and composition and impair liver substrate uptake. Exercise training mitigates T2D and reduces LFC, but the benefits of different training intensities in terms of lipoprotein classes and liver substrate uptake are unclear. The aim of this study was to evaluate the effects of moderate-intensity continuous training (MICT) or sprint interval training (SIT) on LFC, liver substrate uptake, and lipoprotein profile in subjects with normoglycemia or prediabetes/T2D. We randomized 54 subjects (normoglycemic group, n = 28; group with prediabetes/T2D, n = 26; age = 40–55 yr) to perform either MICT or SIT for 2 wk and measured LFC with magnetic resonance spectroscopy, lipoprotein composition with NMR, and liver glucose uptake (GU) and fatty acid uptake (FAU) using PET. At baseline, the group with prediabetes/T2D had higher LFC, impaired lipoprotein profile, and lower whole body insulin sensitivity and aerobic capacity compared with the normoglycemic group. Both training modes improved aerobic capacity ( P < 0.001) and lipoprotein profile (reduced LDL and increased large HDL subclasses; all P < 0.05) with no training regimen (SIT vs. MICT) or group effect (normoglycemia vs. prediabetes/T2D). LFC tended to be reduced in the group with prediabetes/T2D compared with the normoglycemic group posttraining ( P = 0.051). When subjects were divided according to LFC (high LFC, >5.6%; low LFC, <5.6%), training reduced LFC in subjects with high LFC ( P = 0.009), and only MICT increased insulin-stimulated liver GU ( P = 0.03). Short-term SIT and MICT are effective in reducing LFC in subjects with fatty liver and in improving lipoprotein profile regardless of baseline glucose tolerance. Short-term MICT is more efficient in improving liver insulin sensitivity compared with SIT.NEW & NOTEWORTHY In the short term, both sprint interval training and moderate-intensity continuous training (MICT) reduce liver fat content and improve lipoprotein profile; however, MICT seems to be preferable in improving liver insulin sensitivity.


2020 ◽  
Vol 105 (12) ◽  
pp. e4290-e4303
Author(s):  
Ronja Ojala ◽  
Kumail K Motiani ◽  
Kaisa K Ivaska ◽  
Milja Arponen ◽  
Jari-Joonas Eskelinen ◽  
...  

Abstract Context Exercise training improves bone mineral density, but little is known about the effects of training on bone marrow (BM) metabolism. BM insulin sensitivity has been suggested to play an important role in bone health and whole-body insulin sensitivity. Objective To study the effects of exercise training on BM metabolism. Design Randomized controlled trial. Setting Clinical research center. Participants Sedentary healthy (n = 28, 40–55 years, all males) and insulin resistant (IR) subjects (n = 26, 43–55 years, males/females 16/10) Intervention Two weeks of sprint interval training or moderate-intensity continuous training Main outcome measures We measured femoral, lumbar, and thoracic BM insulin-stimulated glucose uptake (GU) and fasting free fatty acid uptake (FFAU) using positron-emission tomography and bone turnover markers from plasma. Results At baseline, GU was highest in lumbar, followed by thoracic, and lowest in femoral BM (all Ps &lt; 0.0001). FFAU was higher in lumbar and thoracic than femoral BM (both Ps &lt; 0.0001). BM FFAU and femoral BM GU were higher in healthy compared to IR men and in females compared to males (all Ps &lt; 0.05). Training increased femoral BM GU similarly in all groups and decreased lumbar BM FFAU in males (all Ps &lt; 0.05). Osteocalcin and PINP were lower in IR than healthy men and correlated positively with femoral BM GU and glycemic status (all Ps &lt; 0.05). Conclusions BM metabolism differs regarding anatomical location. Short-term training improves BM GU and FFAU in healthy and IR subjects. Bone turnover rate is decreased in insulin resistance and associates positively with BM metabolism and glycemic control. Clinical Trial Registration Number NCT01344928.


Healthcare ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1628
Author(s):  
Bin Fang ◽  
Yonghwan Kim ◽  
Moonyoung Choi

Cardiorespiratory fitness, anaerobic power, and lower extremity strength are essential for soccer players at all levels. An effective program should be developed to improve physical strength for adolescent soccer players who need to combine academic and technical training. This study analyzed the impact of short-term high intensity interval training (HIIT) training and traditional moderate intensity continuous training (MICT) on adolescent soccer players. Participants included 56 adolescent soccer players who were divided into HIIT and MICT groups. The training program was conducted 3 times a week for 4 weeks using cycle ergometer. Each session included the same resistance training program, and the characteristics of HIIT and MICT were applied to improve cardiorespiratory fitness and anaerobic power. Body composition analysis, graded exercise test for peak oxygen uptake (VO2 peak), Wingate anaerobic power test, and isokinetic knee strength test were performed. VO2 peak was improved in HIIT and MICT, but anaerobic threshold and heart rate recovery significantly improved in the HIIT group. Wingate anaerobic peak power had increased significantly in sets 1, 2, and 3 in the HIIT group, but showed significant improvement only in set 1 in the MICT group. The isokinetic strength improved significantly in the HIIT group at 60°/s and in the MICT group at 240°/s. There was no significant change in body composition in either group. In conclusion, short-term HIIT administered to adolescent soccer players effectively improved cardiorespiratory fitness in HIIT and MICT groups. While HIIT increased anaerobic threshold and power, MICT effectively improved muscle endurance. Short-term intensive training can be considered a time-efficient training strategy.


2007 ◽  
Vol 114 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Faidon Magkos ◽  
Yannis Tsekouras ◽  
Stavros A. Kavouras ◽  
Bettina Mittendorfer ◽  
Labros S. Sidossis

A single bout of moderate-intensity exercise increases whole-body insulin sensitivity for 12–48 h post-exercise; however, the relationship between exercise energy expenditure and the improvement in insulin sensitivity is not known. We hypothesized that the exercise-induced increase in whole-body insulin sensitivity, assessed with HOMAIR (homoeostasis model assessment of insulin resistance), is directly related to the energy expended during exercise. We studied 30 recreationally active non-obese men (age, 27±5 years; body mass index, 24±2 kg/m2) in the post-absorptive state on two separate occasions: once after exercising at 60% of V̇O22peak (peak oxygen consumption) for 30–120 min on the preceding afternoon (expending a total of 1.28–5.76 MJ) and once after an equivalent period of rest. Blood samples were obtained the following morning. Exercise-induced changes in HOMAIR were curvilinearly related to exercise energy expenditure (r=−0.666, P=0.001) with a threshold of approx. 3.77 MJ (900 kcal) for improvements in HOMAIR to be manifested. In particular, HOMAIR was reduced by 32±24% (P=0.003) in subjects who expended more than 3.77 MJ during exercise, but did not change for those who expended fewer than 3.77 MJ (−2±21%; P=0.301). Furthermore, the magnitude of change in HOMAIR after exercise was directly associated with baseline (i.e. resting) HOMAIR (r=−0.508, P=0.004); this relationship persisted in multivariate analysis. We conclude that improved whole-body insulin resistance after a single bout of exercise is curvilinearly related to exercise energy expenditure, and requires unfeasible amounts of exercise for most sedentary individuals.


2019 ◽  
Vol 317 (1) ◽  
pp. H114-H123 ◽  
Author(s):  
Katie Hesketh ◽  
Sam O. Shepherd ◽  
Juliette A. Strauss ◽  
David A. Low ◽  
Robert J. Cooper ◽  
...  

Passive heat therapy (PHT) has been proposed as an alternative intervention to moderate-intensity continuous training (MICT) in individuals who are unable or unwilling to exercise. This study aimed to make the first comparison of the effect of PHT and MICT on 1) skeletal muscle capillarization and endothelial-specific endothelial nitric oxide synthase (eNOS) content and 2) mitochondrial density, glucose transporter 4 (GLUT4), and intramuscular triglyceride (IMTG) content. Twenty young sedentary males (21 ± 1 yr, body mass index 25 ± 1 kg/m2) were allocated to either 6 wk of PHT ( n = 10; 40–50 min at 40°C in a heat chamber, 3×/wk) or MICT ( n = 10; time-matched cycling at ~65% V̇o2peak). Muscle biopsies were taken from the vastus lateralis muscle before and after training. Immunofluorescence microscopy was used to assess changes in skeletal muscle mitochondrial density (mitochondrial marker cytochrome c oxidase subunit 4), GLUT4, and IMTG content, capillarization, and endothelial-specific eNOS content. V̇o2peakand whole body insulin sensitivity were also assessed. PHT and MICT both increased capillary density (PHT 21%; MICT 12%), capillary-fiber perimeter exchange index (PHT 15%; MICT 12%) ( P < 0.05), and endothelial-specific eNOS content (PHT 8%; MICT 12%) ( P < 0.05). However, unlike MICT (mitochondrial density 40%; GLUT4 14%; IMTG content 70%) ( P < 0.05), PHT did not increase mitochondrial density (11%, P = 0.443), GLUT4 (7%, P = 0.217), or IMTG content (1%, P = 0.957). Both interventions improved aerobic capacity (PHT 5%; MICT 7%) and whole body insulin sensitivity (PHT 15%; MICT 36%) ( P < 0.05). Six-week PHT in young sedentary males increases skeletal muscle capillarization and eNOS content to a similar extent as MICT; however, unlike MICT, PHT does not affect skeletal muscle mitochondrial density, GLUT4, or IMTG content.NEW & NOTEWORTHY The effect of 6-wk passive heat therapy (PHT) compared with moderate-intensity continuous training (MICT) was investigated in young sedentary males. PHT induced similar increases in skeletal muscle capillarization and endothelial-specific endothelial nitric oxide synthase content to MICT. Unlike MICT, PHT did not improve skeletal muscle mitochondrial density, glucose transporter 4, or intramuscular triglyceride content. These microvascular adaptations were paralleled by improvements in V̇o2peakand insulin sensitivity, suggesting that microvascular adaptations may contribute to functional improvements following PHT.


2020 ◽  
Vol 5 (2) ◽  
pp. 41
Author(s):  
Luca Russomando ◽  
Vincenzo Bono ◽  
Annamaria Mancini ◽  
Alessia Terracciano ◽  
Francesca Cozzolino ◽  
...  

We aimed to compare the effects of a personalized short-term high-intensity interval training (HIIT) vs. standard moderate intensity continuous training (MICT) on body fat percentage, abdominal circumference, BMI and maximal oxygen uptake (VO2max) in overweight volunteers. Twenty overweight sedentary volunteers (24.9 ± 2.9y; BMI: 26.1 ± 1 kgm−2) were randomly assigned to 2 groups, HIIT or MICT. HIIT trained 6 weeks (3-days/week), 40-min sessions as follows: 6-min warm-up, 20-min resistance training (RT) at 70% 1-RM, 8-min HIIT up to 90% of the predicted Maximal Heart Rate (HRmax), 6-min cool-down. MICT trained 6 weeks (3-days/week) 60-min sessions as follows: 6-min warm-up, 20-min RT at 70% 1-RM, 30-min MICT at 60–70% of the predicted HRmax, 4-min cool-down. Two-way ANOVA was performed in order to compare the efficacy of HIIT and MICT protocols, and no significant interaction between training x time was evidenced (p > 0.05), indicating similar effects of both protocols on all parameters analyzed. Interestingly, the comparison of Δ mean percentage revealed an improvement in VO2max (p = 0.05) together with a positive trend in the reduction of fat mass percentage (p = 0.06) in HIIT compared to MICT protocol. In conclusion, 6 weeks of personalized HIIT, with reduced training time (40 vs. 60 min)/session and volume of training/week, improved VO2max and reduced fat mass percentage more effectively compared to MICT. These positive results encourage us to test this training in a larger population.


Cardiology ◽  
2018 ◽  
Vol 141 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Anneke van Biljon ◽  
Andrew J. McKune ◽  
Katrina D. DuBose ◽  
Unathi Kolanisi ◽  
Stuart J. Semple

Objectives: This study aimed to investigate the impact of 3 isocaloric exercise programs on cardiac autonomic nervous system (ANS) functioning in children. Methods: One hundred nine children (39% boys and 61% girls) aged 10–13 years (mean 11.07 ± 0.81) were conveniently assigned to 1 of 4 groups as follows: Moderate-intensity continuous training (MICT; n = 29) at 65–70% of the predicted maximum heart rate (MHR), High-intensity interval training (HIIT; n = 29) at > 80% of the predicted MHR, HIIT and MICT combined on alternate weeks (ALT; n = 27), and a control group (n = 24). Morning ANS activity was assessed via analysis of heart rate variability (HRV), with the patient in supine position for 10 min, before and after the exercise intervention. Data Analysis: A 2-way analysis of variance was used to evaluate the effects of training on all HRV parameters (p < 0.05/4 = 0.0125). Results: After 5 weeks of training, significant improvements were observed for ln of the standard deviation of normal-to-normal intervals (p < 0.0001), ln of the root mean square of successive difference (p < 0.0001), and ln of standard deviation 1 (p < 0.0001), with superior results reported in the HIIT group (effect size [ES] = 2.22, 2.69, and 2.69) compared with the MICT (ES = 1.67, 1.75, and 1.75) and ALT (ES = 0.87, 1.06, and 1.06) groups, respectively. Conclusion: Short-term HIIT seems to induce superior alterations in cardiac ANS activity compared to MICT and ALT in children through enhanced vagal activity.


Sign in / Sign up

Export Citation Format

Share Document