Mr Imaging of Chronic Alcoholism

1992 ◽  
Vol 33 (3) ◽  
pp. 201-206 ◽  
Author(s):  
K. Hayakawa ◽  
H. Kumagai ◽  
Y. Suzuki ◽  
N. Furusawa ◽  
T. Haga ◽  
...  

We evaluated the brain lesions of patients with chronic alcoholism (n = 34) in comparison with age- and sex-matched controls (n = 40) by MR imaging. T1-weighted sagittal and axial images and T2-weighted axial images were obtained with a 0.5 T superconducting MR unit. Various brain measurements were then performed, and the presence of regions of abnormal signal intensity was also compared between the two groups. The brain measurements revealed significant cerebral atrophy (characterized by lateral and 3rd ventricular dilatation, and widening of the interhemispheric fissure) as well as significant cerebellar atrophy (represented by 4th ventricular dilatation) in the alcoholic group. These changes were more prominent in patients in their fifties and sixties than in those aged in the thirties and forties. Focal hypointense lesions were observed in 20.6% of the alcoholics and in 5% of the controls (p < 0.01), while focal hyperintense lesions were observed in 61.8% of the alcoholics and in 20% of the controls (p < 0.001). The severity of these MR findings correlated well with the age of the patients. These observations suggest that alcohol is an important promotor of brain aging.

2021 ◽  
Vol 8 (7) ◽  
pp. 1235
Author(s):  
Kavita Tiwari ◽  
Suresh Goyal ◽  
Ravi Soni ◽  
Sunilkumar Devaraj ◽  
Saurabh Goyal ◽  
...  

Background: India has 57 million or more than a third of the world's 146 million undernourished children. Protein energy malnutrition is associated with cerebral atrophy 2 which may be detrimental to intellectual development. The aim and objective of this stusy was to study the changes in the brain by cranial imaging in children with malnutrition aged 6 months to 5 years and to correlate these changes with severity of malnutrition.Methods: It was a hospital based prospective study done in Bal Chikitsalay, Maharana Bhupal government hospital, Udaipur during the study period July 2015 to July 2016. Total 120 children were enrolled, out of which 80 were severely malnourished, 20 were moderately malnourished and 20 normally nourished children undergoing neuroimaging for some other reason taken as controls. All the cases were subjected to CT scan and the following parameters were noted. Central atrophy was evaluated by bifrontal index (BFR) and bicaudate index (BCR). Cortical atrophy was evaluated by width of sylvian fissure (SFW) and widening of interhemispheric fissure (IHD). These parameters were then compared with the severity of malnutrition and among controls. Data was analysed with standard software of biostatics using parametric tests, Pearson’s correlation analysis, ANOVA test and student’s t test.Results: On an average 80% of SAM and 10% of MAM had various degree of cerebral atrophy while none of the controls showed significant degree of cerebral atrophy.Conclusions: Effect of malnutrition on brain can be objectively assessed by CT indices, BFR, BCR, SFW and IHD to define the degree of cerebral atrophy in the malnourished population.


GeroPsych ◽  
2012 ◽  
Vol 25 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Katja Franke ◽  
Christian Gaser

We recently proposed a novel method that aggregates the multidimensional aging pattern across the brain to a single value. This method proved to provide stable and reliable estimates of brain aging – even across different scanners. While investigating longitudinal changes in BrainAGE in about 400 elderly subjects, we discovered that patients with Alzheimer’s disease and subjects who had converted to AD within 3 years showed accelerated brain atrophy by +6 years at baseline. An additional increase in BrainAGE accumulated to a score of about +9 years during follow-up. Accelerated brain aging was related to prospective cognitive decline and disease severity. In conclusion, the BrainAGE framework indicates discrepancies in brain aging and could thus serve as an indicator for cognitive functioning in the future.


2006 ◽  
Vol 105 (Supplement) ◽  
pp. 2-4 ◽  
Author(s):  
James G. Douglas ◽  
Robert Goodkin

ObjectIn a substantial number of patients treated at the authors' facility for brain metastases, additional lesions are identified at the time of Gamma Knife surgery (GKS). These lesions are often widely dispersed and may number over 10, which is the maximal number of matrices that can be currently placed for treatment with Leksell Gamma-Plan 4C. The authors describe a simple planning method for GKS in patients with multiple, widely dispersed central nervous system (CNS) metastases.MethodsTwo patients presented with three to five identified recurrent metastases from non–small cell lung carcinoma and breast carcinoma after having received whole-brain radiotherapy. At the time of treatment with GKS in each patient, spoiled-gradient Gd-enhanced magnetic resonance (MR) imaging revealed substantially more metastases than originally thought, which were widely scattered throughout all regions of the brain. The authors simplified the treatment planning approach by dividing the entire CNS contents into six contiguous, nonoverlapping matrices, which allowed for the planning, calculation, and treatment of all lesions.Two patients were successfully treated with GKS for more than 10 CNS metastases by using this simple planning method. Differing peripheral doses to varied-size lesions were delivered by prescribing to different isodose curves within any given matrix when required. Dose–volume histograms showed brain doses as follows: 10% of the total brain volume received 5 to 6.4 Gy; 25% received 3.8 to 4.8 Gy; 50% received 2.7 to 3.1 Gy; and 75% received 2.2 to 2.5 Gy.Conclusions The delineation of more metastases than appreciated on the diagnostic MR imaging is a common occurrence at the time of GKS at the authors' institution. The treatment of multiple (>10), widely dispersed CNS metastases can be simplified by the placement of multiple, contiguous, non-overlapping matrices, which can be employed to treat lesions in all areas of the brain when separate matrices cannot be utilized.


2020 ◽  
Vol 23 (5) ◽  
pp. 402-410 ◽  
Author(s):  
Lin-Zi Li ◽  
Shan-Shan Lei ◽  
Bo Li ◽  
Fu-Chen Zhou ◽  
Ye-Hui Chen ◽  
...  

Aim and Objective: The Dendrobium officinalis flower (DOF) is popular in China due to common belief in its anti-aging properties and positive effects on “nourish yin”. However, there have been relatively few confirmatory pharmacological experiments conducted to date. The aim of this work was to evaluate whether DOF has beneficial effects on learning and memory in senescent rats, and, if so, to determine its potential mechanism of effect. Materials and Methods: SD rats were administrated orally DOF at a dose of 1.38, or 0.46 g/kg once a day for 8 weeks. Two other groups included a healthy untreated control group and a senescent control group. During the 7th week, a Morris water maze test was performed to assess learning and memory. At the end of the experiment, serum and brain samples were collected to measure concentrations of antioxidant enzymes, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GSH-Px) in serum, and the neurotransmitters, including γ-aminobutyric acid (γ-GABA), Glutamic (Glu), and monoamine oxidase B (MAO-B) in the brain. Histopathology of the hippocampus was assessed using hematoxylin-eosin (H&E) staining. Results: The results suggested that treatment with DOF improved learning as measured by escape latency, total distance, and target quadrant time, and also increased levels of γ-GABA in the brain. In addition, DOF decreased the levels of MDA, Glu, and MAO-B, and improved SOD and GSHPx. Histopathological analysis showed that DOF also significantly reduced structural lesions and neurodegeneration in the hippocampus relative to untreated senescent rats. Conclusion: DOF alleviated brain aging and improved the spatial learning abilities in senescent rats, potentially by attenuating oxidative stress and thus reducing hippocampal damage and balancing the release of neurotransmitters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chi-Wei Chang ◽  
Chuang-Hsin Chiu ◽  
Ming-Hsien Lin ◽  
Hung-Ming Wu ◽  
Tsung-Hsun Yu ◽  
...  

Abstract Background Expression of translocator protein (TSPO) on the outer mitochondrial membrane of activated microglia is strongly associated with neuroinflammation. The second-generation PET ligand [18F]FEPPA specifically binds TSPO to enable in vivo visualization and quantification of neuroinflammation. We optimized a fully automated radiosynthesis method and evaluated the utility of [18F]FEPPA, the second-generation PET ligand specifically binds TSPO, in a mouse model of systemic LPS challenge to detect TSPO-associated signals of central and peripheral inflammation. In vivo dynamic PET/MR imaging was performed in LPS-induced and control mice after [18F]FEPPA administration. The relationship between the [18F]FEPPA signal and the dose of LPS was assessed. The cytokine levels (i.e., TNF-α, Il-1β, Il-6) in LPS-induced mice were measured by RT-PCR. Standard uptake value (SUV), total volume of distribution (VT) and area under the curve (AUC) were determined based on the metabolite-uncorrected plasma input function. Western blotting and immunostaining were used to measure TSPO expression in the brain. Results The fully automated [18F]FEPPA radiosynthesis produced an uncorrected radiochemical yield of 30 ± 2% within 80 min, with a radiochemical purity greater than 99% and specific activity of 148.9‒216.8 GBq/µmol. Significant differences were observed in the brain after [18F]FEPPA administration: SUV, VT and AUC were 1.61 ± 0.1, 1.25 ± 0.12 and 1.58 ± 0.09-fold higher in LPS-injected mice than controls. TNF-α, Il-1β and Il-6 mRNA levels were also elevated in the brains of LPS-injected mice. Western blotting revealed TSPO (p < 0.05) and Iba-1 (p < 0.01) were upregulated in the brain after LPS administration. In LPS-injected mice, TSPO immunoactivity colocalized with Iba-1 in the cerebrum and TSPO was significantly overexpressed in the hippocampus and cerebellum. The peripheral organs (heart, lung) of LPS-injected mice had higher [18F]FEPPA signal-to-noise ratios than control mice. Conclusions Based on the current data on ligand specificity and selectivity in central tissues using 7 T PET/MR imaging, we demonstrate that [18F]FEPPA accumulations significant increased in the specific brain regions of systemic LPS-induced neuroinflammation (5 mg/kg). Future investigations are needed to determine the sensitivity of [18F]FEPPA as a biomarker of neuroinflammation as well as the correlation between the PET signal intensity and the expression levels of TSPO.


2002 ◽  
Vol 43 (5) ◽  
pp. 464-473
Author(s):  
M. Alemany Ripoll ◽  
R. Raininko

Purpose: To compare the detectability of small experimental intracranial haemorrhages on MR imaging at 0.5 T and 1.5 T, from hyperacute to subacute stages. Material and Methods: 1 ml of autologous blood was injected into the brain of 15 rabbits to create intraparenchymal haematomas. Since the blood partially escaped into the cerebrospinal fluid (CSF) spaces, detectability of subarachnoid and intraventricular blood was also evaluated. MR imaging at 0.5 T and at 1.5 T was repeated up to 14 days, including T1-, proton density- and T2-weighted (w) spin-echo (SE), FLAIR and T2*-w gradient echo (GE) pulse sequences. The last MR investigation was compared to the formalin-fixed brain sections in 7 animals. Results: The intraparenchymal haematomas were best revealed with T2*-w GE sequences, with 100% of sensitivity at 1.5 T and 90–95% at 0.5 T. Blood in the CSF spaces was significantly ( p < 0.05) better detected at 1.5 T with T2*-w GE sequences and detected best during the first 2 days. The next most sensitive sequence for intracranial blood was FLAIR. SE sequences were rather insensitive. Conclusion: 1.5 T equipment is superior to 0.5 T in the detection of intracranial haemorrhages from acute to subacute stages. T2*-w GE sequences account for this result but other sequences are also needed for a complete examination.


1972 ◽  
Vol 121 (562) ◽  
pp. 259-264 ◽  
Author(s):  
Randall Rosenthal ◽  
Llewellyn B. Bigelow

Despite extensive gross and microscopic scrutiny, no consistent pathological findings have emerged from studies of autopsy material from schizophrenic patients. Dunlap (1924) carried out the first controlled study involving schizophrenic and control brains and concluded that ‘there was not even a suspicion of consistent organic brain disease as a basis for the psychosis of schizophrenia’. More recently both Wolf and Cowen (1952), and Weinstein (1954), reviewed the neuropathological literature and concluded that there were no consistent findings at autopsy that could be construed as characteristic of schizophrenia. These authors felt that earlier claims were based on failure to appreciate the range of normal variation in the brain as well as a failure to include an adequate control population in the study.


2008 ◽  
Vol 15 (2) ◽  
pp. 180-188 ◽  
Author(s):  
CP Gilmore ◽  
JJG Geurts ◽  
N Evangelou ◽  
JCJ Bot ◽  
RA van Schijndel ◽  
...  

Background Post-mortem studies demonstrate extensive grey matter demyelination in MS, both in the brain and in the spinal cord. However the clinical significance of these plaques is unclear, largely because they are grossly underestimated by MR imaging at conventional field strengths. Indeed post-mortem MR studies suggest the great majority of lesions in the cerebral cortex go undetected, even when performed at high field. Similar studies have not been performed using post-mortem spinal cord material. Aim To assess the sensitivity of high field post-mortem MRI for detecting grey matter lesions in the spinal cord in MS. Methods Autopsy material was obtained from 11 MS cases and 2 controls. Proton Density-weighted images of this formalin-fixed material were acquired at 4.7Tesla before the tissue was sectioned and stained for Myelin Basic Protein. Both the tissue sections and the MR images were scored for grey matter and white matter plaques, with the readers of the MR images being blinded to the histopathology results. Results Our results indicate that post-mortem imaging at 4.7Tesla is highly sensitive for cord lesions, detecting 87% of white matter lesions and 73% of grey matter lesions. The MR changes were highly specific for demyelination, with all lesions scored on MRI corresponding to areas of demyelination. Conclusion Our work suggests that spinal cord grey matter lesions may be detected on MRI more readily than GM lesions in the brain, making the cord a promising site to study the functional consequences of grey matter demyelination in MS.


Sign in / Sign up

Export Citation Format

Share Document