scholarly journals Selected pathobiological features and principles of pharmacological pain management

2020 ◽  
Vol 48 (5) ◽  
pp. 030006052090365
Author(s):  
Razia Abdool Gafaar Khammissa ◽  
Raoul Ballyram ◽  
Jeanine Fourie ◽  
Michael Bouckaert ◽  
Johan Lemmer ◽  
...  

Pain induced by inflammation and nerve injury arises from abnormal neural activity of primary afferent nociceptors in response to tissue damage, which causes long-term elevation of the sensitivity and responsiveness of spinal cord neurons. Inflammatory pain typically resolves following resolution of inflammation; however, nerve injury—either peripheral or central—may cause persistent neuropathic pain, which frequently manifests as hyperalgesia or allodynia. Neuralgias, malignant metastatic bone disease, and diabetic neuropathy are some of the conditions associated with severe, often unremitting chronic pain that is both physically and psychologically debilitating or disabling. Therefore, optimal pain management for patients with chronic neuropathic pain requires a multimodal approach that comprises pharmacological and psychological interventions. Non-opioid analgesics (e.g., paracetamol, aspirin, or other non-steroidal anti-inflammatory drugs) are first-line agents used in the treatment of mild-to-moderate acute pain, while opioids of increasing potency are indicated for the treatment of persistent, moderate-to-severe inflammatory pain. N-methyl D-aspartate receptor antagonists, antidepressants, anticonvulsants, or a combination of these should be considered for the treatment of chronic neuropathic pain. This review discusses the various neural signals that mediate acute and chronic pain, as well as the general principles of pain management.

2019 ◽  
Vol 20 (1) ◽  
pp. 95-108
Author(s):  
Adriana Miclescu ◽  
Antje Straatmann ◽  
Panagiota Gkatziani ◽  
Stephen Butler ◽  
Rolf Karlsten ◽  
...  

AbstractBackground and aimsAside from the long term side effects of a nerve injury in the upper extremity with devastating consequences there is often the problem of chronic neuropathic pain. The studies concerning the prevalence of persistent pain of neuropathic origin after peripheral nerve injuries are sparse. The prevalence and risk factors associated with chronic neuropathic pain after nerve injuries in the upper extremity were assessed.MethodsA standardized data collection template was employed prospectively and retrospectively for all patients with traumatic nerve injuries accepted at the Hand Surgery Department, Uppsala, Sweden between 2010 and 2018. The template included demographic data, pain diagnosis, type of injured nerve, level of injury, date of the lesion and repair, type of procedure, reoperation, time since the procedure, S-LANSS questionnaire (Self report-Leeds Assessment of Neuropathic Symptoms and Signs), RAND-36 (Item short form health survey), QuickDASH (Disability of Shoulder, Arm and Hand) and additional questionnaires concerned medication, pain intensity were sent to 1,051 patients with nerve injuries. Partial proportional odds models were used to investigate the association between persistent pain and potential predictors.ResultsMore than half of the patients undergoing a surgical procedure developed persistent pain. Prevalence of neuropathic pain was 73% of the patients with pain (S-LANSS ≥ 12 or more). Multivariate analysis indicated that injury of a major nerve OR 1.6 (p = 0.013), years from surgery OR 0.91 (p = 0.01), younger age OR 0.7 (p < 0.001), were the main factors for predicting pain after surgery. The type of the nerve injured was the strongest predictor for chronic pain with major nerves associated with more pain (p = 0.019).ConclusionsA high prevalence of chronic pain and neuropathic pain with a negative impact on quality of life and disability were found in patients after traumatic nerve injury. Major nerve injury, younger age and less time from surgery were predictors for chronic pain.


2011 ◽  
Vol 115 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Maarten Swartjes ◽  
Aurora Morariu ◽  
Marieke Niesters ◽  
Leon Aarts ◽  
Albert Dahan

Background At low dose, the nonselective N-methyl-D-aspartate receptor antagonist ketamine produces potent analgesia. In humans, psychedelic side effects limit its use. To assess whether other N-methyl-D-aspartate receptor antagonist have an improved therapeutic utility index, we compared antinociceptive, side effect, and locomotor activity of three N-methyl-D-aspartate receptor antagonists. Methods Ketamine, its active metabolite norketamine, and the NR2B-selective antagonist traxoprodil (CP-101,606) were tested in rat models of acute antinociception (paw-withdrawal response to heat) and chronic neuropathic pain (spared nerve injury). Side effects (stereotypical behavior, activity level) were scored and locomotor function of the nerve-injured paw was assessed using computerized gait analysis. In the chronic pain model, treatment was given 7 days after surgery, for 3 h on 5 consecutive days. Results All three N-methyl-D-aspartate receptor antagonists caused dose-dependent antinociception in the acute pain model and relief of mechanical and cold allodynia for 3-6 weeks after treatment in the chronic pain model (P &lt; 0.05 vs. saline). In both tests, ketamine was most potent. Norketamine was as much as two times less potent and traxoprodil was up to 8 times less potent than ketamine (based on area under the curve measures). Nerve injury caused an inability to use the affected paw that either did not improve after treatment (ketamine, traxoprodil) or showed only a limited effect (norketamine). Traxoprodil, but not ketamine or norketamine, showed clear separation between effect and side effect. Conclusions The observation that traxoprodil causes relief of chronic pain outlasting the treatment period with no side effects makes it an attractive alternative to ketamine in the treatment of chronic neuropathic pain.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lazzaro di Biase ◽  
Emma Falato ◽  
Maria Letizia Caminiti ◽  
Pasquale Maria Pecoraro ◽  
Flavia Narducci ◽  
...  

Chronic pain is one of the leading causes of disability and disease burden worldwide, accounting for a prevalence between 6.9% and 10% in the general population. Pharmacotherapy alone results ineffective in about 70-60% of patients in terms of a satisfactory degree of pain relief. Focused ultrasound is a promising tool for chronic pain management, being approved for thalamotomy in chronic neuropathic pain and for bone metastases-related pain treatment. FUS is a noninvasive technique for neuromodulation and for tissue ablation that can be applied to several tissues. Transcranial FUS (tFUS) can lead to opposite biological effects, depending on stimulation parameters: from reversible neural activity facilitation or suppression (low-intensity, low-frequency ultrasound, LILFUS) to irreversible tissue ablation (high-intensity focused ultrasounds, HIFU). HIFU is approved for thalamotomy in neuropathic pain at the central nervous system level and for the treatment of facet joint osteoarthritis at the peripheral level. Potential applications include HIFU at the spinal cord level for selected cases of refractory chronic neuropathic pain, knee osteoarthritis, sacroiliac joint disease, intervertebral disc nucleolysis, phantom limb, and ablation of peripheral nerves. FUS at nonablative dosage, LILFUS, has potential reversible and tissue-selective effects. FUS applications at nonablative doses currently are at a research stage. The main potential applications include targeted drug and gene delivery through the Blood-Brain Barrier, assessment of pain thresholds and study of pain, and reversible peripheral nerve conduction block. The aim of the present review is to describe the approved and potential applications of the focused ultrasound technology in the field of chronic pain management.


2019 ◽  
Vol 20 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Marzia Malcangio

AbstractBackgroundAcute pain is a warning mechanism that exists to prevent tissue damage, however pain can outlast its protective purpose and persist beyond injury, becoming chronic. Chronic Pain is maladaptive and needs addressing as available medicines are only partially effective and cause severe side effects. There are profound differences between acute and chronic pain. Dramatic changes occur in both peripheral and central pathways resulting in the pain system being sensitised, thereby leading to exaggerated responses to noxious stimuli (hyperalgesia) and responses to non-noxious stimuli (allodynia).Critical role for immune system cells in chronic painPreclinical models of neuropathic pain provide evidence for a critical mechanistic role for immune cells in the chronicity of pain. Importantly, human imaging studies are consistent with preclinical findings, with glial activation evident in the brain of patients experiencing chronic pain. Indeed, immune cells are no longer considered to be passive bystanders in the nervous system; a consensus is emerging that, through their communication with neurons, they can both propagate and maintain disease states, including neuropathic pain. The focus of this review is on the plastic changes that occur under neuropathic pain conditions at the site of nerve injury, the dorsal root ganglia (DRG) and the dorsal horn of the spinal cord. At these sites both endothelial damage and increased neuronal activity result in recruitment of monocytes/macrophages (peripherally) and activation of microglia (centrally), which release mediators that lead to sensitisation of neurons thereby enabling positive feedback that sustains chronic pain.Immune system reactions to peripheral nerve injuriesAt the site of peripheral nerve injury following chemotherapy treatment for cancer for example, the occurrence of endothelial activation results in recruitment of CX3C chemokine receptor 1 (CX3CR1)-expressing monocytes/macrophages, which sensitise nociceptive neurons through the release of reactive oxygen species (ROS) that activate transient receptor potential ankyrin 1 (TRPA1) channels to evoke a pain response. In the DRG, neuro-immune cross talk following peripheral nerve injury is accomplished through the release of extracellular vesicles by neurons, which are engulfed by nearby macrophages. These vesicles deliver several determinants including microRNAs (miRs), with the potential to afford long-term alterations in macrophages that impact pain mechanisms. On one hand the delivery of neuron-derived miR-21 to macrophages for example, polarises these cells towards a pro-inflammatory/pro-nociceptive phenotype; on the other hand, silencing miR-21 expression in sensory neurons prevents both development of neuropathic allodynia and recruitment of macrophages in the DRG.Immune system mechanisms in the central nervous systemIn the dorsal horn of the spinal cord, growing evidence over the last two decades has delineated signalling pathways that mediate neuron-microglia communication such as P2X4/BDNF/GABAA, P2X7/Cathepsin S/Fractalkine/CX3CR1, and CSF-1/CSF-1R/DAP12 pathway-dependent mechanisms.Conclusions and implicationsDefinition of the modalities by which neuron and immune cells communicate at different locations of the pain pathway under neuropathic pain states constitutes innovative biology that takes the pain field in a different direction and provides opportunities for novel approaches for the treatment of chronic pain.


2016 ◽  
Vol 33 (S1) ◽  
pp. S500-S500
Author(s):  
E. Dobrzynska ◽  
N. Clementi

IntroductionEmotionally unstable personality disorder (EUPD) is characterised by Pain Paradox. The response for acute, self-induced pain seems to be attenuated while chronic, endogenous pain is usually intolerable. Pain management of this group of patients poses many difficulties, including discrepancies between subjective and objective pain assessment, patients’ demands for strong analgesics and impact on relationship with other professionals.Objectives and aimsThe purpose of the study was to review pain management options for persons diagnosed with EUPD and complaining of chronic pain.MethodsMEDLINE and PsycINFO databases were searched for all English-language articles containing the keywords “chronic pain”, “pain management”, “borderline personality disorder”, and “emotionally unstable personality disorder”.ResultsSeventeen relevant papers were identified. Suggested first step in pain management was ongoing clarification with EUPD patients that analgesics are unlikely to fully treat their pain and support of non-pharmacological approaches to pain, including cognitive-behavioural strategies. Regarding pharmacology, liberal use of non-addicting analgesics was recommended with highly conservative use of opioid analgesics. Importance of evaluation and treatment of any underlying mood and/or anxiety syndromes was stressed as well as liaison with other professionals (e.g. psychologists, neurologists, orthopaedics, and physiotherapists).ConclusionsPatients with EUPD often report chronic pain, which can only be managed by close collaboration of professionals from different disciplines.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jeongsoo Han ◽  
Minjee Kwon ◽  
Myeounghoon Cha ◽  
Motomasa Tanioka ◽  
Seong-Karp Hong ◽  
...  

The insular cortex (IC) is associated with important functions linked with pain and emotions. According to recent reports, neural plasticity in the brain including the IC can be induced by nerve injury and may contribute to chronic pain. Continuous active kinase, protein kinase Mζ(PKMζ), has been known to maintain the long-term potentiation. This study was conducted to determine the role of PKMζin the IC, which may be involved in the modulation of neuropathic pain. Mechanical allodynia test and immunohistochemistry (IHC) of zif268, an activity-dependent transcription factor required for neuronal plasticity, were performed after nerve injury. Afterζ-pseudosubstrate inhibitory peptide (ZIP, a selective inhibitor of PKMζ) injection, mechanical allodynia test and immunoblotting of PKMζ, phospho-PKMζ(p-PKMζ), and GluR1 and GluR2 were observed. IHC demonstrated that zif268 expression significantly increased in the IC after nerve injury. Mechanical allodynia was significantly decreased by ZIP microinjection into the IC. The analgesic effect lasted for 12 hours. Moreover, the levels of GluR1, GluR2, and p-PKMζwere decreased after ZIP microinjection. These results suggest that peripheral nerve injury induces neural plasticity related to PKMζand that ZIP has potential applications for relieving chronic pain.


Author(s):  
Jiahe Li ◽  
Peter M. Grace

Chronic pain imposes a tremendous burden on the sufferer’s quality of life. Mounting evidence supports a critical role for neuroimmune interactions in the development and maintenance of chronic pain. Nerve injury leads to the activation of glia via sphingosine-1-phosphate, Toll-like receptors, chemokines, neuropeptides, and purinergic receptors. In turn, activated glia influence neuronal activity via interleukin 1β, tumor necrosis factor, brain-derived neurotrophic factor, reactive oxygen species, and excitatory amino acids. Epigenetic mechanisms of neuroimmune communication are also discussed. Investigation of neuroimmune interactions after peripheral nerve injury broadens our understanding of the mechanisms that drive neuropathic pain, and such interactions provide potential therapeutic targets for managing neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document