scholarly journals INHBA promotes the proliferation, migration and invasion of colon cancer cells through the upregulation of VCAN

2021 ◽  
Vol 49 (6) ◽  
pp. 030006052110149
Author(s):  
Jia Guo ◽  
Yuan Liu

Objective Colon cancer has high morbidity and mortality rates, and proliferation, invasion and migration play an important role in colon cancer progression. Here, the effects of inhibin subunit beta A (INHBA) on cell proliferation, invasion and migration were investigated. Methods The UALCAN database was used to assess INHBA expression in colon cancer tissues and predict the survival of patients with high and low INHBA expression. The relevant proteins were detected by RT-qPCR and western blot. Cell transfection was performed to overexpress or inhibit INHBA and versican (VCAN). The high correlation between INHBA and VCAN found through LinkedOmics and StarBase databases was verified by immunoprecipitation assays. Cell proliferation was detected by cell counting kit-8 and colony formation assays. Wound healing and Transwell assays were used to assess migration and invasion. Results INHBA expression was upregulated in colon cancer tissues and cells. INHBA inhibition impaired the proliferation, migration and invasion of these cells. In addition, we confirmed the correlation between INHBA and VCAN in colon cancer cells. Finally, we found that INHBA interference inhibited the aggressive behavior of colon cancer cells by downregulating VCAN. Conclusion INHBA promotes the proliferation, migration and invasion of colon cancer cells through the upregulation of VCAN.

2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Shihou Sheng ◽  
Lin Xie ◽  
Yuanyu Wu ◽  
Meng Ding ◽  
Tao Zhang ◽  
...  

Abstract MicroRNAs (MiRs) are thought to display regulator action in tumor suppression and oncogenesis. miR-144 plays an important role in the development of various cancers, such as colorectal cancer, breast cancer, and lung cancer, by targetting different molecules potentially involved in many signaling pathways. SMAD4 is a common signaling during tumor progression, and it can inhibit cell proliferation and promote cell motility in most epithelial cells. The present study focused on the effect of miR-144 and SMAD4 on colon cancer in order to find the novel gene therapy target for the treatment of colon cancer. Quantitative real-time polymerase chain reaction was used to assess the expression level of miR-144 in colon cancer tissues and SW620 cells. MTT assay, scratch test, and transwell assay were used to evaluate cell proliferation, migration, and invasion, respectively. Moreover, luciferase assays were utilized to identify the predictive effect of miR-144 on SMAD4. Western blotting was performed to determine the relative expression of protein related to SMAD4. We found miR-144 level was significantly lower in colon cancer tissues and SW620 cells. Moreover, SMAD4 level, both in mRNA and protein, was obviously elevated in colon cancer tissues. Further, miR-144 mimics treatment inhibited cells proliferation, invasion, and migration. Fluorescence intensity of miR-144 mimics group in wild type cells was decreased. MiR-144 mimics repressed the SMAD4 expression both in mRNA and protein. These findings about miR-144/SMAD4 pair provide a novel therapeutic method for colon cancer patients.


Author(s):  
Wen-jun Zhang ◽  
Ce-gui Hu ◽  
Hong-liang Luo ◽  
Zheng-ming Zhu

The pathological mechanism of colon cancer is very complicated. Therefore, exploring the molecular basis of the pathogenesis of colon cancer and finding a new therapeutic target has become an urgent problem to be solved in the treatment of colon cancer. ATP plays an important role in regulating the progression of tumor cells. P2 × 7 belongs to ATP ion channel receptor, which is involved in the progression of tumors. In this study, we explored the effect and molecular mechanism of ATP-mediated P2 × 7 receptor on the migration and metastasis of colon cancer cells. The results showed that ATP and BzATP significantly increased the inward current and intracellular calcium concentration of LOVO and SW480 cells, while the use of antagonists (A438079 and AZD9056) could reverse the above phenomenon. We found that ATP promoted the migration and invasion of LOVO and SW480 cells and is dose-dependent on ATP concentration (100–300 μM). Similarly, BzATP (10, 50, and 100 μM) also significantly promoted the migration and invasion of colon cancer cells in a concentration-dependent manner. While P2 × 7 receptor antagonists [A438079 (10 μM), AZD9056 (10 μM)] or P2 × 7 siRNA could significantly inhibit ATP-induced colon cancer cell migration and invasion. Moreover, in vivo experiments showed that ATP-induced activation of P2 × 7 receptor promoted the growth of tumors. Furthermore, P2 × 7 receptor activation down-regulated E-cadherin protein expression and up-regulated MMP-2 mRNA and concentration levels. Knocking down the expression of P2 × 7 receptor could significantly inhibit the increase in the expression of N-cadherin, Vimentin, Zeb1, and Snail induced by ATP. In addition, ATP time-dependently induced the activation of STAT3 via the P2 × 7 receptor, and the STAT3 pathway was required for the ATP-mediated invasion and migration. Our conclusion is that ATP-induced P2 × 7 receptor activation promotes the migration and invasion of colon cancer cells, possibly via the activation of STAT3 pathway. Therefore, the P2 × 7 receptor may be a potential target for the treatment of colon cancer.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhengbin Chai ◽  
Li Wang ◽  
Yabing Zheng ◽  
Na Liang ◽  
Xiwei Wang ◽  
...  

Abstract Background CKS1 is highly expressed in colon cancer tissues, and is essential for cancer cell proliferation. The downstream molecular mechanism of CKS1 has been fully studied, but the upstream regulatory mechanism of it is still unclear. Earlier research found that PADI3 plays its anti-tumor roles via suppress cell proliferation, in this study, we found that the expression pattern of PADI3 and CKS1 are negatively correlated in colon cancer tissues, and overexpression of PADI3 can partly reverse CKS1 induced cancer cell proliferation. However, the regulatory mechanism of PADI3 and CKS1 in the tumorigenesis of colon cancer is still unclear and need to do further research. Methods Western blot and real-time PCR were used to detect the expression levels of genes. CCK-8 and colony formation assays were used to examine cell proliferation and colony formation ability. Overexpression and rescue experiments were used to study the molecular mechanism of CKS1 in colon cancer cells, BALB/c nude mice were used to study the function of CKS1 in vivo. Results CKS1 is highly expressed in colon cancer tissues, and the overexpression of CKS1 promotes cell proliferation and colony formation in both HCT116 (originating from primary colon cancer) and SW620 (originating from metastatic tumor nodules of colon cancer) cells. CKS1-expressing HCT116 cells produced larger tumors than the control cells. The expression pattern of PADI3 and CKS1 are negatively correlation in clinical samples of colon cancer, further study indicates that PADI3 can significantly decrease Hsp90 and CKS1 expression, and Hsp90 is essential for PADI3 to downregulate CKS1expression in colon cancer cells. Conclusions PADI3 exerts its antitumor activity by inhibiting Hsp90 and CKS1 expression, and Hsp90 is essential for PADI3 to suppress CKS1 expression.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Seong-Ho Lee ◽  
Jihye Lee ◽  
Thomas Herald ◽  
Sarah Cox ◽  
Leela Noronha ◽  
...  

Abstract Objectives Colon cancer is one of leading causes of cancer mortality worldwide. Sorghum is the fifth most largely cultivated crop for human diet in the world. Most sorghum varieties contain high content of phenolic compounds. The objective of the current study is to evaluate the anti-cancer properties of a novel high phenolic sorghum bran extract prepared under 70% ethanol with 5% citric acid solvent. Methods High phenolic sorghum, accession number PI570481, was grown in Puerto Vallarta, Mexico winter nursery during the 2018 and high phenolic sorghum bran extract was prepared using 70% ethanol with 5% citric acid solvent at room temperature for 2 hours. Human colon cancer cell lines (HCT15, SW480, HCT116 and HT-29) were treated with different doses of high phenolic sorghum bran extract. Cell proliferation and apoptosis was measured using MTS assay and Alexa Fluor 488 Annexin V/Dead Cell Apoptosis system, respectively. Distribution of cell cycle was measured Texas Red channel using BD LSRFortessa system. Cell migration and invasion was measured using wound healing assay and Matrigel, respectively. The luciferase activity of reporter genes was measured using a dual-luciferase assay and Western blot was performed to measure expression of cancer phenotype-associated proteins. Results Cell proliferation was inhibited and apoptosis was induced in the human colon cancer cells treated with high phenolic sorghum bran extract in a dose-dependent manner. High phenolic sorghum bran extract led to S phage arrest. Cell migration and invasion was also repressed in the human colon cancer cells treated with high phenolic sorghum bran extract. The change of cancer phenotypes was associated with up- or down-regulation of regulatory genes. Conclusions The present study expands our understanding on the potential use of high phenolic sorghum bran for prevention of human colon cancer. Funding Sources Cooperative Agreement grant from USDA-ARS to S-HL.


2018 ◽  
Vol 46 (5) ◽  
pp. 2138-2148 ◽  
Author(s):  
Shengli Pan ◽  
Yingying Deng ◽  
Jun Fu ◽  
Yuhao Zhang ◽  
Zhijin Zhang ◽  
...  

Background/Aims: A few Rho GTPase activating proteins (RhoGAPs) have been identified as tumor suppressors in a variety of human cancers. ARHGAP17, a member of RhoGAPs, has been reported to be involved in the maintenance of tight junction and epithelial barrier. The present study aimed to explore its expression in colon cancer and the possible function in colonic carcinogenesis. Methods: The mRNA and protein expression was assessed by realtime PCR and immunoblotting, respectively. Cell Counting Kit-8 (CCK-8) and Transwell assays were performed to evaluate cell proliferation and invasion, respectively. Results: We found that ARHGAP17 expression was obviously lower in colon cancer specimens than in normal colonic mucosa. ARHGAP17 expression was associated with tumor stage, size and differentiation. In vitro analysis demonstrated that ARHGAP17 overexpression inhibited cell growth and invasion of HCT-8 and HCT-116 cells. In addition, an in vivo experimental metastasis model showed that ARHGAP17 overexpression restricted cancer metastasis to the lung. Mechanically, we found that Wnt signaling contributed to the functions of ARHGAP17 in colon cancer cells. Gene set enrichment analysis (GSEA) in The Cancer Genome Atlas dataset showed that the Wnt signaling pathway was negatively associated with ARHGAP17 expression. The mRNA expression of β-catenin (an important signaling transducer of canonical Wnt signaling) gene (CTNNB1) was negatively correlated with ARHGAP17 expression. Immunoblot analysis of downstream effectors of β-catenin (c-Myc/p27 and MMP7) in ARHGAP17 overexpressing colon cancer cells and metastatic tumors within the lung also validated the GSEA result. ARHGAP17 overexpression increased the phosphorylation of glycogen synthetase kinase 3β, and decreased β-catenin nuclear localization and transcriptional activity. Furthermore, inhibition of Wnt signaling by Wnt Inhibitor Factor-1 (WIF-1) in HIEC cells with ARHGAP17 knockdown significantly attenuated the promotion effects of ARHGAP17 knockdown on cell proliferation, invasion and the activation of β-catenin. Conclusion: these results suggest that ARHGAP17 might serve as a tumor suppressor in colon cancer progression and metastasis through Wnt/β-catenin signaling pathway.


2021 ◽  
Vol 20 ◽  
pp. 153473542110626
Author(s):  
Peng Bian ◽  
Chuan Liu ◽  
Wei Hu ◽  
Yu Ding ◽  
Shusheng Qiu ◽  
...  

The main treatment of breast cancer includes surgical resection, radiotherapy, chemotherapy, endocrine therapy, and molecular targeted therapy, but the outcomes remain unsatisfactory. Previous studies demonstrated that echinacoside, microRNA (miRNA/miR)-4306 and miR-4508 were associated with lymph node metastasis, chemoresistance and self-renewal capability in breast cancer, but in-depth studies on the underlying mechanism of their anticancer effects have not been performed to date. In order to identify the role of miR-4306 and miR-4508, and the mechanism of the antitumor effect of echinacoside in breast cancer, the present study first examined the expression of miR-4306 and miR-4508 in breast cancer tissues to examine their possible role in the development of breast cancer, then evaluated the effect of echinacoside on the expression of miR-4306 and miR-4508 on the viability, apoptosis, cell cycle, migration, and invasion abilities of breast cancer cells to explore the anti-cancer effect of echinacoside and the involvement of miR-4306 and miR-4508. Finally, the breast cancer cells and mice bearing breast cancer xenografts were treated with echinacoside and inhibitors of miR-4508 or miR-4306 to confirm their role on the anticancer effect of echinacoside. The results showed that miR-4306 and miR-4508 were decreased in breast cancer tissues and cells. Echinacoside inhibited cell proliferation, invasion and migration, and promoted the apoptosis of breast cancer cells by downregulating the expression of miR-4306 and miR-4508. In conclusion, this is the first study to show the association between echinacoside and miRNAs in cancer. The present study elucidates an underlying molecular mechanism of the antitumor effect of echinacoside on breast cancer, and thus may contribute to preventive and therapeutic strategies for breast cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yibin Zhao ◽  
Hongyi Zhou ◽  
Jie Shen ◽  
Shaohui Yang ◽  
Ke Deng ◽  
...  

BackgroundDysregulated microRNAs (miRNAs) are common in human cancer and are involved in the proliferation, promotion, and metastasis of tumor cells. Therefore, this study aimed to evaluate the expression and biological function of miR-1236-3p in colon cancer.MethodsThis study screened the miRNA in normal and colon cancer tissues through array analysis. In addition, quantitative Reverse Transcription–Polymerase Chain Reaction (qRT-PCR) analysis was performed to validate the expression of miR-1236-3p in normal and tumor tissues from colon cancer patients and cancer cell lines. Online predicting algorithms and luciferase reporter assays were also employed to confirm Doublecortin Like Kinase 3 (DCLK3) was the target for miR-1236-3p. Moreover, the impact of miR-1236-3p on the progression of colon cancer was evaluated in vitro and in vivo. Western blotting and qRT-PCR were also performed to investigate the interactions between miR-1236-3p and DCLK3.ResultsMiR-1236-3p was significantly downregulated in colon cancer tissues and its expression was associated with the TNM stage and metastasis of colon. In addition, the in vitro and in vivo experiments showed that miR-1236-3p significantly promoted cancer cell apoptosis and inhibited the proliferation, invasion, and migration of cancer cells. The results also showed that miR-1236-3p hindered Epithelial–mesenchymal Transition (EMT) by targeting DCLK3. Moreover, the expression of DCLK3 mediated the effects of miR-1236-3p on the progression of cancer.ConclusionsMiR-1236-3p functions as a tumor suppressor in colon cancer by targeting DCLK3 and is therefore a promising therapeutic target for colon cancer.


Sign in / Sign up

Export Citation Format

Share Document