smad4 expression
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 2)

Hematology ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 43-52
Author(s):  
Jiangzhao Zhang ◽  
Min Zhang ◽  
Yan Liang ◽  
Min Liu ◽  
Zhiping Huang

Author(s):  
Jovana Rosic ◽  
Sandra Dragicevic ◽  
Marko Miladinov ◽  
Jovana Despotovic ◽  
Aleksandar Bogdanovic ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250634
Author(s):  
Wei Xu ◽  
Sau Har Lee ◽  
Fengjun Qiu ◽  
Li Zhou ◽  
Xiaoling Wang ◽  
...  

Background Drug resistance frequently led to the failure of chemotherapy for malignant cancers, hence causing cancer relapse. Thus, understanding mechanism of drug resistance in cancer is vital to improve the treatment efficacy. Here, we aim to evaluate the association between SMAD4 expression and the drug resistance in cancers by performing a meta-analysis. Method Relevant studies detecting SMAD4 expression in cancer patients treated with chemo-drugs up till December 2020 were systematically searched in four common scientific databases using selected keywords. The pooled hazard ratio (HR) was the ratio of hazard rate between SMAD4neg population vs SMAD4pos population. The HRs and risk ratios (RRs) with 95% confidence intervals (CIs) were used to explore the association between SMAD4 expression losses with drug resistance in cancers. Result After an initial screening according to the inclusion and exclusion criteria, eleven studies were included in the meta-analysis. There were a total of 2092 patients from all the included studies in this analysis. Results obtained indicated that loss of SMAD4 expression was significantly correlated with drug resistance with pooled HRs (95% CI) of 1.23 (1.01–1.45), metastasis with pooled RRs (95% CI) of 1.10 (0.97–1.25) and recurrence with pooled RRs (95% CI) of 1.32 (1.06–1.64). In the subgroup analysis, cancer type, drug type, sample size and antibody brand did not affect the significance of association between loss of SMAD4 expression and drug resistance. In addition, there was no evidence of publication bias as suggested by Begg’s test. Conclusion Findings from our meta-analysis demonstrated that loss of SMAD4 expression was correlated with drug resistance, metastasis and recurrence. Therefore, SMAD4 expression could be potentially used as a molecular marker for cancer resistance.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hongping Niu ◽  
Xiaoling Miao ◽  
Xingxiu Zhan ◽  
Xiaona Zhou ◽  
Xingyan Li ◽  
...  

Intrauterine adhesion (IUA) is a serious complication caused by excessive fibrosis resulting from endometrial repair after trauma. The traditional Chinese medicine Tiaoshen Tongluo recipe (TTR) contains ingredients associated with the alleviation of fibrosis. The transforming growth factor-β1 (TGF-β1)/Smad pathway is thought to mediate fibrosis in IUA. In this study, we evaluated the influence of TTR on endometrial fibrosis in a rat model of IUA and in TGF-β1-stimulated endometrial stromal cells (ESCs). TTR was found to alleviate the level of endometrial fibrosis in a rat model of IUA. A higher number of collagen fibers and greater damage were observed in the endometrial tissue of untreated rats compared to those treated with TTR. The expression of TGF-β1, Smad2, Smad3, and Smad4 was upregulated following IUA, whereas Smad7 expression was downregulated. TTR lowers the expression of TGF-β1, Smad2, Smad3, and Smad4 but increases the expression of Smad7 in vivo, indicating that TTR can modulate the expression of the TGF-β1/Smad pathway to mediate fibrosis. In ESCs, the phosphorylation of Smad2 and Smad3 and upregulation of Smad4 were induced by TGF-β1 whereas the expression of Smad7 was inhibited. Administration of TTR reduces the phosphorylation of Smad2 and Smad3, increases Smad4 expression induced by TGF-β1, and promotes the expression of Smad7. TTR modulates the TGF-β1/Smad pathway to alleviate the generation of fibrotic tissue in response to IUA.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2032
Author(s):  
Ying-Si Wu ◽  
Jar-Yi Ho ◽  
Cheng-Ping Yu ◽  
Chun-Jung Cho ◽  
Chia-Lun Wu ◽  
...  

Gemcitabine (GCB) resistance is a major issue in bladder cancer chemoresistance, but its underlying mechanism has not been determined. Epithelial-mesenchymal transition (EMT) has been shown to be comprehensively involved in GCB resistance in several other cancer types, but the direct connection between EMT and GCB remains unclear. This study was designed to elucidate the mechanism of EMT-related GCB resistance in bladder cancer and identify a potential phytochemical to modulate drug sensitivity. The biological effects of ellagic acid (EA) or its combined effects with GCB were compared in GCB-resistant cells and the GCB-sensitive line in terms of cell viability, apoptosis, motility, and in vivo tumorigenicity. The molecular regulation of EMT-related GCB resistance was evaluated at both the mRNA and protein expression levels. Our results indicated that TGF-β/Smad induced the overactivation of EMT in GCB-resistant cells and reduced the expression of GCB influx transporters (hCNT1 and hENT1). Moreover, ellagic acid (EA) inhibited the TGF-β signaling pathway both in vitro and in vivo by reducing Smad2, Smad3, and Smad4 expression and thereby resensitized GCB sensitivity. In conclusion, our results demonstrate that TGF-β/Smad-induced EMT contributes to GCB resistance in bladder cancer by reducing GCB influx and also elucidate the novel mechanisms of EA-mediated inhibition of TGF-β/Smad-induced EMT to overcome GCB resistance. Our study warrants further investigation of EA as an effective therapeutic adjuvant agent for overcoming GCB resistance in bladder cancer.


2021 ◽  
Vol 18 (8) ◽  
pp. 1798-1809
Author(s):  
Han Ping Cheng ◽  
Chiu-Jung Huang ◽  
Ming-Long Tsai ◽  
Hooi Tin Ong ◽  
Soon Keng Cheong ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Yi-Wen Huang ◽  
Chien-Wei Lin ◽  
Pan Pan ◽  
Tianjiao Shan ◽  
Carla Elena Echeveste ◽  
...  

Innate immune cells in the tumor microenvironment have been proposed to control the transition from benign to malignant stages. In many cancers, increased infiltration of natural killer (NK) cells associates with good prognosis. Although the mechanisms that enable NK cells to restrain colorectal cancer (CRC) are unclear, the current study suggests the involvement of Smad4. We found suppressed Smad4 expression in circulating NK cells of untreated metastatic CRC patients. Moreover, NK cell-specific Smad4 deletion promoted colon adenomas in DSS-treated ApcMin/+ mice and adenocarcinomas in AOM/DSS-treated mice. Other studies have shown that Smad4 loss or weak expression in colonic epithelium associates with poor survival in CRC patients. Therefore, targeting Smad4 in both colonic epithelium and NK cells could provide an excellent opportunity to manage CRC. Toward this end, we showed that dietary intervention with black raspberries (BRBs) increased Smad4 expression in colonic epithelium in patients with FAP or CRC and in the two CRC mouse models. Also, benzoate metabolites of BRBs, such as hippurate, upregulated Smad4 and Gzmb expression that might enhance the cytotoxicity of primary human NK cells. Of note, increased levels of hippurate is a metabolomic marker of a healthy gut microbiota in humans, and hippurate also has antitumor effects. In conclusion, our study suggests a new mechanism for the action of benzoate metabolites derived from plant-based foods. This mechanism could be exploited clinically to upregulate Smad4 in colonic epithelium and NK cells, thereby delaying CRC progression.


2020 ◽  
Author(s):  
Michael Eyres ◽  
Simone Landfredini ◽  
Adam Burns ◽  
Andrew Blake ◽  
Frances Willenbrock ◽  
...  

Background and AimsPancreatic ductal adenocarcinoma (PDAC) is characterised by advanced disease stage at presentation, aggressive disease biology and resistance to therapy resulting in extremely poor five-year survival <10%. PDAC is classified into transcriptional subtypes with distinct survival characteristics, although how these arise is not known. Epigenetic deregulation, rather than genetics, has been proposed to underpin progression but exactly why is unclear and hindered by analysis of clinical samples.MethodsGenome-wide epigenetic mapping of DNA modifications 5-hydroxymethylcytosine (5mc) and 5-hydroxymethylcytosine (5hmc) using oxidative bisulphite sequencing (oxBS). Bioinformatics using iCluster and mutational profiling to identify overlap with transcriptional signatures in FFPE from resected patients and confirmation in vivo.ResultsWe find that more aggressive squamous-like PDAC subtypes result from epigenetic inactivation of loci including GATA6 that promote differentiated classical-pancreatic subtypes. We show that squamous-like PDAC transcriptional subtypes are associated with greater loss of 5hmc due to reduced expression of the 5mc-hydroxylase TET2. Furthermore, we find that SMAD4 directly supports TET2 levels in the pancreas and classical-pancreatic tumors and loss of SMAD4 expression is associated reduced 5hmc, GATA6 and squamous-like tumors. Importantly, enhancing TET2 stability using Metformin and VitaminC/ascorbic acid (AA) restores 5hmc and GATA6 levels, reverting squamous-like tumor phenotypes and WNT-dependence in vitro and in vivo.ConclusionsWe identify epigenetic deregulation of pancreatic differentiation as an underpinning event behind the emergence of transcriptomic subtypes in PDAC. Our data shows that restoring epigenetic control increases biomarkers of classical-pancreatic tumors and raises the possibility that combination of Vitamin C and Metformin may prolong survival in patients with squamous-like pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document