scholarly journals Encephalitis in the Newborn Pup due to a Canine Herpesvirus

1968 ◽  
Vol 5 (2) ◽  
pp. 135-145 ◽  
Author(s):  
D. H. Percy ◽  
H. J. Olander ◽  
L. E. Carmichael

A puppy with natural infection, none of 4 puppies examined 18 to 48 hours after experimental infection, and all of 13 puppies examined 3 to 9 days after experimental infection with a canine herpesvirus had lesions of the central nervous system. These constituted a non-suppurative meningoencephalomyelitis, characterized by focal and segmental destruction of gray and white matter and diffuse and focal microgliosis. In general, the gray matter was most severely involved, especially within the brain stem. The histopathologic findings in this disease are comparable to those in other herpetic encephalitides.

1942 ◽  
Vol 76 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Frederik B. Bang

The chick embryo responds to experimental infection with the virus of pseudorabies with a disease pattern simulating the natural infection. Virus lesions of the membrane are followed by infection of all tissues of the central nervous system. Fixed strains produce a hemorrhagic destruction of the central nervous system of the embryo, which is referable to destruction of blood vessel endothelium. Field strains lack the hemorrhagic tendency, but infect the brain when inoculated on the membrane. Neutralization of the virus by specific hyperimmune serum can be demonstrated by inoculation on the membrane. The reaction of the embryo to the virus varies with the age of the embryo. This is reflected both in the membranal lesion and in the subsequent encephalitis.


1999 ◽  
Vol 73 (1) ◽  
pp. 801-804 ◽  
Author(s):  
Nadine Jarousse ◽  
Ekaterina G. Viktorova ◽  
Evgeny V. Pilipenko ◽  
Vadim I. Agol ◽  
Michel Brahic

ABSTRACT The DA strain of Theiler’s virus causes a persistent and demyelinating infection of the white matter of spinal cord, whereas the GDVII strain causes a fatal gray-matter encephalomyelitis. Studies with recombinant viruses showed that this difference in phenotype is controlled mainly by the capsid. However, conflicting results regarding the existence of determinants of persistence in the capsid of the GDVII strain have been published. Here we show that a GDVII virus whose neurovirulence has been attenuated by an insertion in the 5′ noncoding region does not persist in the central nervous systems of mice. Furthermore, this virus infects the gray matter efficiently, but not the white matter. These results confirm the absence of determinants of persistence in the GDVII capsid. They suggest that the DA capsid controls persistence by allowing the virus to infect cells in the white matter of the spinal cord.


Author(s):  
Massimo Filippi ◽  
Maria A. Rocca

The classic view of multiple sclerosis (MS) as a chronic, inflammatory-demyelinating condition affecting solely the white matter (WM) of the central nervous system (CNS) has been challenged by the demonstration, from pathologic and magnetic resonance imaging (MRI) studies, of an extensive and diffuse involvement of the gray matter (GM). This observation has driven the application of modern MR technology and methods of analysis to quantify the extent and distribution of damage to the different compartments of the CNS, with the ultimate goal of improving our understanding of the factors associated with the accumulation of clinical disability and cognitive impairment in these patients.


2005 ◽  
Vol 103 (2) ◽  
pp. 311-319 ◽  
Author(s):  
Michael Y. Chen ◽  
Alan Hoffer ◽  
Paul F. Morrison ◽  
John F. Hamilton ◽  
Jeffrey Hughes ◽  
...  

Object. Achieving distribution of gene-carrying vectors is a major barrier to the clinical application of gene therapy. Because of the blood—brain barrier, the distribution of genetic vectors to the central nervous system (CNS) is even more challenging than delivery to other tissues. Direct intraparenchymal microinfusion, a minimally invasive technique, uses bulk flow (convection) to distribute suspensions of macromolecules widely through the extracellular space (convection-enhanced delivery [CED]). Although acute injection into solid tissue is often used for delivery of oligonucleotides, viruses, and liposomes, and there is preliminary evidence that certain of these large particles can spread through the interstitial space of the brain by the use of convection, the use of CED for distribution of viruses in the brain has not been systematically examined. That is the goal of this study. Methods. Investigators used a rodent model to examine the influence of size, osmolarity of buffering solutions, and surface coating on the volumetric distribution of virus-sized nanoparticles and viruses (adeno-associated viruses and adenoviruses) in the gray matter of the brain. The results demonstrate that channels in the extracellular space of gray matter in the brain are large enough to accommodate virus-sized particles and that the surface characteristics are critical determinants for distribution of viruses in the brain by convection. Conclusions. These results indicate that convective distribution can be used to distribute therapeutic viral vectors in the CNS.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


2018 ◽  
Vol 23 (1) ◽  
pp. 10-13
Author(s):  
James B. Talmage ◽  
Jay Blaisdell

Abstract Injuries that affect the central nervous system (CNS) can be catastrophic because they involve the brain or spinal cord, and determining the underlying clinical cause of impairment is essential in using the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), in part because the AMA Guides addresses neurological impairment in several chapters. Unlike the musculoskeletal chapters, Chapter 13, The Central and Peripheral Nervous System, does not use grades, grade modifiers, and a net adjustment formula; rather the chapter uses an approach that is similar to that in prior editions of the AMA Guides. The following steps can be used to perform a CNS rating: 1) evaluate all four major categories of cerebral impairment, and choose the one that is most severe; 2) rate the single most severe cerebral impairment of the four major categories; 3) rate all other impairments that are due to neurogenic problems; and 4) combine the rating of the single most severe category of cerebral impairment with the ratings of all other impairments. Because some neurological dysfunctions are rated elsewhere in the AMA Guides, Sixth Edition, the evaluator may consult Table 13-1 to verify the appropriate chapter to use.


2018 ◽  
Vol 25 (28) ◽  
pp. 3333-3352 ◽  
Author(s):  
Natalia Pessoa Rocha ◽  
Ana Cristina Simoes e Silva ◽  
Thiago Ruiz Rodrigues Prestes ◽  
Victor Feracin ◽  
Caroline Amaral Machado ◽  
...  

Background: The Renin-Angiotensin System (RAS) is a key regulator of cardiovascular and renal homeostasis, but also plays important roles in mediating physiological functions in the central nervous system (CNS). The effects of the RAS were classically described as mediated by angiotensin (Ang) II via angiotensin type 1 (AT1) receptors. However, another arm of the RAS formed by the angiotensin converting enzyme 2 (ACE2), Ang-(1-7) and the Mas receptor has been a matter of investigation due to its important physiological roles, usually counterbalancing the classical effects exerted by Ang II. Objective: We aim to provide an overview of effects elicited by the RAS, especially Ang-(1-7), in the brain. We also aim to discuss the therapeutic potential for neuropsychiatric disorders for the modulation of RAS. Method: We carried out an extensive literature search in PubMed central. Results: Within the brain, Ang-(1-7) contributes to the regulation of blood pressure by acting at regions that control cardiovascular functions. In contrast with Ang II, Ang-(1-7) improves baroreflex sensitivity and plays an inhibitory role in hypothalamic noradrenergic neurotransmission. Ang-(1-7) not only exerts effects related to blood pressure regulation, but also acts as a neuroprotective component of the RAS, for instance, by reducing cerebral infarct size, inflammation, oxidative stress and neuronal apoptosis. Conclusion: Pre-clinical evidence supports a relevant role for ACE2/Ang-(1-7)/Mas receptor axis in several neuropsychiatric conditions, including stress-related and mood disorders, cerebrovascular ischemic and hemorrhagic lesions and neurodegenerative diseases. However, very few data are available regarding the ACE2/Ang-(1-7)/Mas receptor axis in human CNS.


Author(s):  
Asfree Gwanyanya ◽  
Christie Nicole Godsmark ◽  
Roisin Kelly-Laubscher

Abstract: Ethanolamine is a bioactive molecule found in several cells, including those in the central nervous system (CNS). In the brain, ethanolamine and ethanolamine-related molecules have emerged as prodrug moieties that can promote drug movement across the blood-brain barrier. This improvement in the ability to target drugs to the brain may also mean that in the process ethanolamine concentrations in the brain are increased enough for ethanolamine to exert its own neurological ac-tions. Ethanolamine and its associated products have various positive functions ranging from cell signaling to molecular storage, and alterations in their levels have been linked to neurodegenerative conditions such as Alzheimer’s disease. This mini-review focuses on the effects of ethanolamine in the CNS and highlights the possible implications of these effects for drug design.


Sign in / Sign up

Export Citation Format

Share Document