Applying flow resistance equations to overland flows

2007 ◽  
Vol 31 (4) ◽  
pp. 363-387 ◽  
Author(s):  
Mark W. Smith ◽  
Nicholas J. Cox ◽  
Louise J. Bracken

Resistance to flow determines routing velocities and must be adequately represented both within stream channels and over hillslopes when making predictions of streamflow and soil erosion. The limiting assumptions inherent in flow resistance equations can be relaxed if the spatial and temporal scale over which they are applied is restricted. This requires a substantial methodological advance in the study of overland flows over natural surfaces. It is suggested that terrestrial laser scanning will allow a greater understanding of overland flow hydraulics and present opportunities to investigate resistance to flow over complex morphologies. The Darcy-Weisbach, Chézy and Manning equations are the most widely used empirical equations for the calculation of flow velocity in runoff and erosion models. These equations rest on analyses originally developed for one-dimensional pipe flows and assume conditions which are not met by overland flows. The following assumptions are brought into question: flow can be described as uniform; flow is parallel to the surface; flow is of a constant width and the boundary to the flow is longitudinally uniform; grain roughness is homogeneous over the wetted perimeter and can be considered as random; form roughness and other sources of flow resistance can be ignored; resistance is independent of flow depth; and resistance can be modelled as a function of the Reynolds number. A greater appreciation of the processes contributing to resistance to overland flows must be developed. This paper also presents a brief history of the development of flow resistance equations.

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1864
Author(s):  
Peter Mewis

The effect of vegetation in hydraulic computations can be significant. This effect is important for flood computations. Today, the necessary terrain information for flood computations is obtained by airborne laser scanning techniques. The quality and density of the airborne laser scanning information allows for more extensive use of these data in flow computations. In this paper, known methods are improved and combined into a new simple and objective procedure to estimate the hydraulic resistance of vegetation on the flow in the field. State-of-the-art airborne laser scanner information is explored to estimate the vegetation density. The laser scanning information provides the base for the calculation of the vegetation density parameter ωp using the Beer–Lambert law. In a second step, the vegetation density is employed in a flow model to appropriately account for vegetation resistance. The use of this vegetation parameter is superior to the common method of accounting for the vegetation resistance in the bed resistance parameter for bed roughness. The proposed procedure utilizes newly available information and is demonstrated in an example. The obtained values fit very well with the values obtained in the literature. Moreover, the obtained information is very detailed. In the results, the effect of vegetation is estimated objectively without the assignment of typical values. Moreover, a more structured flow field is computed with the flood around denser vegetation, such as groups of bushes. A further thorough study based on observed flow resistance is needed.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1657
Author(s):  
Jingzhou Zhang ◽  
Shengtang Zhang ◽  
Si Chen ◽  
Ming Liu ◽  
Xuefeng Xu ◽  
...  

To explore the characteristics of overland flow resistance under the condition of sparse vegetative stem coverage and improve the basic theoretical research of overland flow, the resistance characteristics of overland flow were systematically investigated under four slope gradients (S), seven flow discharges (Q), and six degrees of vegetation coverage (Cr). The results show that the Manning roughness coefficient (n) changes with the ratio of water depth to vegetation height (h/hv) while the Reynolds number (Re), Froude number (Fr), and slope (S) are closely related to vegetation coverage. Meanwhile, h/hv, Re, and Cr have strong positive correlations with n, while Fr and S have strong negative correlations with n. Through data regression analysis, a power function relationship between n and hydraulic parameters was observed and sensitivity analysis was performed. It was concluded that the relationship between n and h/hv, Re, Cr, Q, and S shows the same law; in particular, for sparse stem vegetation coverage, Cr is the dominant factor affecting overland flow resistance under zero slope condition, while Cr is no longer the first dominant factor affecting overland flow resistance under non-zero slope condition. In the relationship between n and Fr, Cr has the least effect on overland flow resistance. This indicates that when Manning roughness coefficient is correlated with different hydraulic parameters, the same vegetation coverage has different effects on overland flow resistance. Therefore, it is necessary to study overland flow resistance under the condition of sparse stalk vegetation coverage.


2013 ◽  
Vol 37 (3) ◽  
pp. 422-431 ◽  
Author(s):  
William L. Graf

James C. Knox’s 1977 paper “Human Impacts on Wisconsin Stream Channels,” published in the Annals of the Association of American Geographers, was a key component of a suite of three papers by him defining the response of rivers to the introduction and management of agriculture and to climate change. In this paper he used the Driftless Area of southwest Wisconsin as a laboratory where he could define fluvial responses by their sedimentary signatures in floodplain deposits. Land-use records dating back to the early 19th century along with shorter climate records provided his understanding of the drivers of change. He found that floods increased as an outcome of land-cover change. Upstream tributaries became wider and shallower as coarse deposits limited their adjustments, while main stem channels became narrower and deeper. His paper reflected the influence of his graduate advisor and especially of prominent faculty colleagues at the University of Wisconsin from fields ranging from soils and climatology to geomorphology and history. The paper was the subject of considerable debate in the professional community, but it remains a much-cited example of Knox’s work in unraveling the Quaternary and Holocene history of rivers of the Driftless Area and by extension the upper Mississippi River system.


2021 ◽  
Vol 603 ◽  
pp. 126862
Author(s):  
A. Nicosia ◽  
C. Di Stefano ◽  
V. Pampalone ◽  
V. Palmeri ◽  
V. Ferro

2011 ◽  
Vol 15 (11) ◽  
pp. 3275-3291 ◽  
Author(s):  
S. Gharari ◽  
M. Hrachowitz ◽  
F. Fenicia ◽  
H. H. G. Savenije

Abstract. This paper presents a detailed performance and sensitivity analysis of a recently developed hydrological landscape classification method based on dominant runoff mechanisms. Three landscape classes are distinguished: wetland, hillslope and plateau, corresponding to three dominant hydrological regimes: saturation excess overland flow, storage excess sub-surface flow, and deep percolation. Topography, geology and land use hold the key to identifying these landscapes. The height above the nearest drainage (HAND) and the surface slope, which can be easily obtained from a digital elevation model, appear to be the dominant topographical controls for hydrological classification. In this paper several indicators for classification are tested as well as their sensitivity to scale and resolution of observed points (sample size). The best results are obtained by the simple use of HAND and slope. The results obtained compared well with the topographical wetness index. The HAND based landscape classification appears to be an efficient method to ''read the landscape'' on the basis of which conceptual models can be developed.


2021 ◽  
Author(s):  
Denis Flynn ◽  
Warren Roche

<div>The soil can be modelled as a porous medium in which the three phases of matter coexist and produce the emergent phenomenon of hysteresis.</div><div>Rate-independent hysteresis is a nonlinear phenomenon where the output depends not only on the current input but also the previous history of inputs to the system. In multiphase porous media such as soils, the hysteresis is in the relationship between the soil-moisture content, and the capillary pressure.</div><div>In this work, we develop a simplified hysteretic rainfall-runoff model consisting of the following subsystems that capture much of the physics of flow through a slab of soil:</div><div>1) A slab of soil where rainfall enters and if enough water is present in the soil, it will subsequently drain into the groundwater reservoir. This part of the model is represent by ODE with a Preisach operator.</div><div>2) A runoff component: If the rainfall exceeds the maximum infiltration rate of the soil, the excess will become surface runoff. This part of the model is represented by a series of two hysteretic reservoirs instead of the two linear reservoirs in the literature.</div><div>3) A ground water storage and outflow subsystem component: this is also modelled by a hysteretic reservoir. Finally, the outputs from the groundwater output and the overland flow are combined to give the total runoff. We will examine this model and compare it with non-hysteretic case both qualitatively and quantitively.</div>


2020 ◽  
Vol 12 (16) ◽  
pp. 2657
Author(s):  
Krzysztof Stereńczak ◽  
Rafał Zapłata ◽  
Jarosław Wójcik ◽  
Bartłomiej Kraszewski ◽  
Miłosz Mielcarek ◽  
...  

The Białowieża Forest (BF), a unique ecosystem of historical significance in central Europe, has a long history of assumed human settlement, with at least 200 known archaeological sites (until 2016). This study uncovers new evidence of the cultural heritage of this unique forest area using Airborne Laser Scanning (ALS) technology combined with traditional archaeological field assessment methods to verify the ALS data interpretations and to provide additional evidence about the function and origin of the newly detected archaeological sites. The results of this study include (1) a scientific approach for an improved identification of archaeological resources in forest areas; (2) new evidence about the history of the human use of the BF based on ALS data, covering the entire Polish part of the BF; and (3) an improved remote sensing infrastructure, supporting existing GIS (Geographic Information System) systems for the BF, a famous UNESCO Heritage site. Our study identified numerous locations with evidence of past human agricultural activities known in the literature as “field systems”, “lynchets” and “Celtic fields”. The initial identification included more than 300 km of possible field boundaries and plough headlands, many of which we have verified on the ground. Various past human activities creating those boundaries have existed since the (pre-) Roman Period up to the 13th century AD. The results of this study demonstrate that past human activities in the Polish part of the Białowieża Forest had been more prevalent than previously believed. As a practical result of the described activities, a geodatabase was created; this has practical applications for the system of monument protection in Poland, as well as for local communities and the BF’s management and conservation. The more widely achieved results are in line with the implementation of the concept of a cultural heritage inventory in forested and protected areas—the actions taken specify (built globally) the forms of protection and management of cultural and environmental goods.


2012 ◽  
Vol 16 (9) ◽  
pp. 3293-3307 ◽  
Author(s):  
M. J. Rossi ◽  
J. O. Ares

Abstract. Water infiltration and overland flow are relevant in considering water partition among plant life forms, the sustainability of vegetation and the design of sustainable hydrological models and management. In arid and semi-arid regions, these processes present characteristic trends imposed by the prevailing physical conditions of the upper soil as evolved under water-limited climate. A set of plot-scale field experiments at the semi-arid Patagonian Monte (Argentina) were performed in order to estimate the effect of depression storage areas and infiltration rates on depths, velocities and friction of overland flows. The micro-relief of undisturbed field plots was characterized at z-scale 1 mm through close-range stereo-photogrammetry and geo-statistical tools. The overland flow areas produced by controlled water inflows were video-recorded and the flow velocities were measured with image processing software. Antecedent and post-inflow moisture were measured, and texture, bulk density and physical properties of the upper soil were estimated based on soil core analyses. Field data were used to calibrate a physically-based, mass balanced, time explicit model of infiltration and overland flows. Modelling results reproduced the time series of observed flow areas, velocities and infiltration depths. Estimates of hydrodynamic parameters of overland flow (Reynolds-Froude numbers) are informed. To our knowledge, the study here presented is novel in combining several aspects that previous studies do not address simultaneously: (1) overland flow and infiltration parameters were obtained in undisturbed field conditions; (2) field measurements of overland flow movement were coupled to a detailed analysis of soil microtopography at 1 mm depth scale; (3) the effect of depression storage areas in infiltration rates and depth-velocity friction of overland flows is addressed. Relevance of the results to other similar desert areas is justified by the accompanying biogeography analysis of similarity of the environment where this study was performed with other desert areas of the world.


2008 ◽  
Vol 15 (6) ◽  
pp. 999-1011 ◽  
Author(s):  
J. L. M. P. de Lima ◽  
C. S. Souza ◽  
V. P. Singh

Abstract. Due to the combined effect of wind and rain, the importance of storm movement to surface flow has long been recognized, at scales ranging from headwater scales to large basins. This study presents the results of laboratory experiments designed to investigate the influence of moving rainfall storms on the dynamics of sediment transport by surface runoff. Experiments were carried out, using a rain simulator and a soil flume. The movement of rainfall was generated by moving the rain simulator at a constant speed in the upstream and downstream directions along the flume. The main objective of the study was to characterize, in laboratory conditions, the distribution of sediment grain-size transported by rainfall-induced overland flow and its temporal evolution. Grain-size distribution of the eroded material is governed by the capacity of flow that transports sediments. Granulometric curves were constructed using conventional hand sieving and a laser diffraction particle size analyser (material below 0.250 mm) for overland flow and sediment deliveries collected at the flume outlet. Surface slope was set at 2%, 7% and 14%. Rainstorms were moved with a constant speed, upslope and downslope, along the flume or were kept static. The results of laboratory experiments show that storm movement, affecting the spatial and temporal distribution of rainfall, has a marked influence on the grain-size characteristics of sediments transported by overland flow. The downstream-moving rainfall storms have higher stream power than do other storm types.


Sign in / Sign up

Export Citation Format

Share Document