High-Temperature Rheological Properties of Asphalt Binders

Author(s):  
Mihai O. Marasteanu ◽  
Timothy Clyne ◽  
Jim McGraw ◽  
Xinjun Li ◽  
Raul Velasquez

Previous research efforts have shown that the rutting parameter used in the performance grade asphalt binder specifications, | G*|/ sin d, does not reasonably predict the rutting potential of asphalt mixtures, especially when modified binders are used. A number of other parameters, such as the zero shear rate viscosity and the permanent strain accumulated under repeated creep and recovery, were investigated; however, no consensus was achieved. This paper investigates the use of zero shear rate viscosity and of repeated creep permanent strain as potential specification parameters and discusses the importance of temperature susceptibility and of strain tolerance to the rut resistance of asphalt binders.

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3326
Author(s):  
Amirhossein Ghasemirad ◽  
Nura Bala ◽  
Leila Hashemian

Asphalt binder comprises four main fractions—asphaltenes (A), saturates (S), aromatics (A), and resins (R)—referred to as “SARA”. Asphaltenes plays an important role in determining the linear viscoelastic behavior of asphalt binders. In this research, asphaltenes are added as a distinct modifier to improve the performance properties of asphalt binder. The modified binders are aged using a rolling thin film oven. A dynamic shear rheometer is then used to measure the rheological properties of the binders at high temperatures. Changes in the chemical composition of the modified binders are also studied through the determination of SARA fractions, using precipitation and gravity-driven chromatography methods. The rheological results show that asphaltenes improve the stiffness and elasticity of asphalt binder. It is also shown that the addition of asphaltenes raises the high Performance grade (PG) temperature of the asphalt binder, with every 6% of asphaltenes added resulting in a one-interval increase in high PG temperature grade. SARA analysis shows that the increase in polar fraction content due to the addition of asphaltenes causes the stiffness, elasticity, and viscosity of asphalt binders to increase. The results indicate that asphaltenes are an effective yet inexpensive additive to improve asphalt binder properties at high temperatures.


Author(s):  
Yongjie Ding ◽  
Baoshan Huang ◽  
Xiang Shu ◽  
Boming Tang

In this study, an analytic method was developed for detecting potential oil contaminants in asphalt mixtures using gel permeation chromatography (GPC) and Fourier-transform infrared spectroscopy (FTIR). This study was initiated when the authors were contacted by a major contractor whose field crew reported spots of loose asphalt pavement and suspected the pavement surface was being contaminated with spills of petroleum-based oils or other soluble chemicals. Oil contamination would change the content and performance grade of the asphalt binder in the mixture, thus compromising the properties and performance of the asphalt pavement. The proposed method involved extracting asphalt binders from potentially contaminated asphalt mixtures using the solvent tetrahydrofuran (THF), testing the extracted binders using GPC and FTIR, and comparing their results with those of the pure asphalt binder and oil contaminants. This study first verified the proposed method by testing artificially contaminated asphalt binders at different contamination contents and then evaluated seven potentially contaminated asphalt mixtures from the job site, as well as six possible oil contaminants. The study shows that the GPC results yielded convincing evidence whether or not asphalt mixtures were contaminated and that the FTIR results were effective in detecting specific oil contaminants using their characteristic peaks.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Jiupeng Zhang ◽  
Guoqiang Liu ◽  
Li Xu ◽  
Jianzhong Pei

Sasobit additives with different dosages were added into 70# and 90# virgin asphalt binders to prepare WMA binders. The rheological properties, includingG∗andδ, were measured by using DSR at the temperature ranging from 46°C to 70°C, and the effects of temperature, additive dosage and aging onG∗/sin⁡δ, critical temperature, and H-T PG were investigated. The results indicate that WMA additive improvesG∗but reducesδ, and the improvement on 70# virgin binder is more significant.G∗/sin⁡δexponentially decreases with the increasing temperature but linearly increases with the increasing additive dosage. Aging effect weakens the interaction between binder and additive but significantly increases the binder’s viscosity; that is whyG∗/sin⁡δis higher after short-term aging. In addition, the critical temperature increases with the increasing additive dosage, and the additive dosage should be more than 3% and 5% to improve H-T PG by one grade for 70# and 90# virgin binder, respectively.


2018 ◽  
Vol 45 (5) ◽  
pp. 407-412
Author(s):  
Debaroti Ghosh ◽  
Mugurel Turos ◽  
Ed Johnson ◽  
Mihai Marasteanu

Pavement preservation is playing an increasingly significant role in maintaining our aged pavement infrastructure under severe budget constraints. One important component is the use of surface treatments based on application of sealants. Recently, a number of new products, called bio sealants, have been used to treat aging pavement surfaces. The objective of this study is to investigate rheological properties of the binders treated with these materials to understand the mechanism by which they may improve pavement performance. One plain asphalt binder and four types of sealants, two oil-based sealants, one water-based sealant, and one traditional emulsion were used in the experimental work. The results obtained using a dynamic shear rheometer and a bending beam rheometer were used to determine the changes in rheological properties and the change in performance grade. It was observed that the oil-based sealants have a significant softening effect of the control binder compared to the water-based sealants. The transverse cracking histories from field investigation were used to verify the laboratory findings.


Author(s):  
Moses Akentuna ◽  
Louay N. Mohammad ◽  
Sanchit Sachdeva ◽  
Samuel B. Cooper ◽  
Samuel B. Cooper

Moisture damage of asphalt mixtures is a major distress affecting the durability of asphalt pavements. The loaded wheel tracking (LWT) test is gaining popularity in determining moisture damage because of its ability to relate laboratory performance to field performance. However, the accuracy of LWT’s “pass/fail” criteria for screening mixtures is limited. The objective of this study was to evaluate the capability of the LWT test to identify moisture susceptibility of asphalt mixtures with different moisture conditioning protocols. Seven 12.5 mm asphalt mixtures with two asphalt binder types (unmodified PG 67-22 and modified PG 70-22), and three aggregate types (limestone, crushed gravel, and a semi-crushed gravel) were utilized. Asphalt binder and mixture samples were subjected to five conditioning levels, namely, a control; single freeze–thaw-; triple freeze–thaw-; MiST 3500 cycles; and MiST 7000 cycles. Frequency sweep at multiple temperatures and frequencies, and multiple stress creep recovery tests were performed to evaluate asphalt binders. LWT test was used to evaluate the asphalt mixture samples. Freeze–thaw and MiST conditioning resulted in an increase in stiffness in the asphalt binders as compared with the control. Further, freeze–thaw and MiST conditioning resulted in an increase in rut depth compared with the control asphalt mixture. The conditioning protocols evaluated were effective in exposing moisture-sensitive mixtures, which initially showed compliance with Louisiana asphalt mixture design specifications.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yuefeng Zhu ◽  
Yanwei Li ◽  
Chundi Si ◽  
Xiaote Shi ◽  
Yaning Qiao ◽  
...  

In recent years, the significant demand for sustainable paving materials has led to a rapid increase in the utilization of reclaimed asphalt pavement (RAP) materials. When RAP is mixed with virgin asphalt concrete, particularly when its percentage is high, performance of the binder and asphalt concrete can be adversely affected. For this reason, different types of additives need to be identified and evaluated beforehand to mitigate the adverse effects. In this study, different types of fiber materials were identified and selected as binder/mixture additives, including lignin fiber (LF), polyester fiber (PF), and basalt fiber (BF). Various samples of fiber-modified binders and asphalt mixtures with different RAP contents (0%, 20%, and 40%) were prepared and were evaluated using two sets of laboratory testing: (i) dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests were performed to study the rheological properties of fiber-modified binders; (ii) the wheel tracking test, bending creep test, moisture susceptibility test, fatigue test, and self-healing fatigue test were conducted to characterize the laboratory properties of fiber-modified RAP mixtures. Test results for the modified binders show that the BF-modified binder has the greatest positive effect on the high-temperature performance of the asphalt binder, followed by PF- and LF-modified binders. However, the virgin asphalt shows the best low-temperature property than the fiber-modified asphalt binder. Test results for the whole RAP mixtures show that all fibers have a significant effect on the properties (including high- and low-temperature stability, moisture susceptibility, fatigue, and self-healing ability) of RAP mixtures. Among them, adding BF shows the greatest improvement in high-temperature stability, fatigue resistance, and self-healing ability of RAP mixtures. LF is found to significantly enhance low-temperature properties, and PF can greatly improve the resistance to moisture damage of RAP mixtures. For high percentage of RAP using on sites, adding multiple additives may further enhance its durability.


2013 ◽  
Vol 646 ◽  
pp. 90-96 ◽  
Author(s):  
Aboelkasim Diab ◽  
Zhan Ping You ◽  
Hai Nian Wang

Two Nano Hydrated Lime (NHL) materials with particle sizes of 50 nm and 100 nm were used in this study to investigate to the effect of NHL modification on the creep and recovery of Warm Mix Asphalt (WMA) binders foamed using Advera® with respective to rutting. The NHL was added to the asphalt binder at ratios of 20%, 10%, and 5% by weight of the asphalt binder. The creep and recovery tests were performed at three different stress levels, 3Pa (creep for 100 sec. and 600 sec. recovery), 10Pa (creep for 20 sec. and 600 sec. recovery), and 50Pa (creep for 1 sec and 300 sec. recovery). The tests were performed at a temperature of 58oC. The results were also compared with the Regular Hydrated Lime (RHL) results. The overall results reveal that the neat asphalt binders foamed using advera® showed larger permanent deformation (rutting) potential compared to the binder modified with RHL and NHL foamed using Advera®. As the NHL dose increases, the non-recoverable compliance decreases (rutting decreases). It was also concluded that the application of the RHL with the normal dose (20% by weight of binder) can be replaced by adding 5% (by weight of binder) of 50 nm NHL with respective to rutting.


Author(s):  
Ibrahim A. Abdalfattah ◽  
Walaa S. Mogawer ◽  
Kevin D. Stuart

This study addresses the effects of recycled polyethylene (RPE) on the performances of both asphalt binders and asphalt mixtures. Whether using RPE in an asphalt mixture might leach harmful chemicals into rainwater or melted snow was also determined. Two processes, wet and dry, were used to formulate the RPE modified asphalt binders and mixtures. In the wet process, RPE was added to asphalt binder. In the dry process, it was added to heated aggregates. RPE from two sources and PG 64-22 virgin asphalt binders from two sources were used in this study. In conclusion, RPE improved the rutting resistance of the asphalt binders and asphalt mixtures. However, it had adverse effects on their resistance to intermediate-temperature and non-load associated cracking. The dry process could produce a mixture with a higher RPE dosage compared with the wet process using one virgin asphalt binder but not the other; thus, the virgin asphalt binder source was a significant factor for the dry process. Based on an embryotoxicity test, it was found that RPE can be used by the asphalt paving industry without creating any significant environmental risks.


Author(s):  
Gholam Hossein Hamedi ◽  
Ali Reza Azarhoosh ◽  
Mojtaba Khodadadi

In this study, the effect of using Polypropylene (PP) as an antistripping additive of asphalt mixtures is investigated. Here, the moisture susceptibility of asphalt mixtures is evaluated by determining the micro-mechanisms using the surface free energy (SFE) concept. The adhesion bond between the aggregate and asphalt binder and the cohesion strength of the asphalt binder are considered as the main factors that affect moisture damage of asphalt mixtures. Test results indicate that the use of PP improves the resistance of asphalt mixtures in both wet and dry conditions. Also, the results of the SFE tests showed that the modifying asphalt binder with PP increases free energy of adhesion that will improve adhesion resistance between asphalt binder-aggregates. The amount of debonding energy in the samples which are modified with PP is lower than the control samples. This shows that by modifying asphalt binders, the tendency of asphalt binder-aggregate stripping can be reduced. The results show the total SFE of the asphalt binders of the modified samples have more free energy rather than the control samples. This phenomenon shows that failure in the asphalt binder film and cohesion failure will be happened more rarely.


Sign in / Sign up

Export Citation Format

Share Document