Pathways Toward Zero-Carbon Campus Commuting: Innovative Approaches in Measuring, Understanding, and Reducing Greenhouse Gas Emissions

Author(s):  
Bruce Appleyard ◽  
Alexander R. Frost ◽  
Eduardo Cordova ◽  
Jeremy McKinstry

While universities are significant generators of transport-related greenhouse gas (GHG) emissions, they are uniquely qualified to encourage more sustainable travel behaviors toward achieving rapid decarbonization to meet our global climate action goals. Building on previous university climate action plans, this paper contributes to the literature by describing new and innovative methods in surveying and geospatial analytics. The new geospatial methods involve mapping individuals’ routes to campus, and the creation of Commute/Policy Zones—walk, bike, transit, and motorized—proving useful in (1) quantifying emissions per mode and weighting the survey sample; (2) exploring and testing various policy scenarios; and (3) guiding policy discussions with key stakeholders throughout the campus community. This study also tests four synergistic policy options that, if implemented, could realize a pathway to zero-carbon campus commuting for San Diego State University (SDSU) by 2030, including: (1) more on-campus student housing; (2) expanding public transit use; (3) electrifying vehicles; and (4) electrifying public transit. Finally, the economic and health costs of auto-commuting for SDSU are considerable: Annually, personal auto-commuting is estimated to cost $46.7 million, healthcare costs from non-GHG air pollutants are $1.67 million, and $81 million worth of time (5.4 million hours) is lost in car commutes to campus. SDSU is also estimated to subsidize each parking space at over $700 per year. By reducing the demand for internal combustion engine vehicles, increasing housing near campus, improving access to walking, biking, public transit, and shared mobility technology, and repowering everything through renewable energy, a zero-carbon transportation network is within reach.

Author(s):  
Dandan Liu ◽  
Dewei Yang ◽  
Anmin Huang

China has grown into the world’s largest tourist source market and its huge tourism activities and resulting greenhouse gas (GHG) emissions are particularly becoming a concern in the context of global climate warming. To depict the trajectory of carbon emissions, a long-range energy alternatives planning system (LEAP)-Tourist model, consisting of two scenarios and four sub-scenarios, was established for observing and predicting tourism greenhouse gas peaks in China from 2017 to 2040. The results indicate that GHG emissions will peak at 1048.01 million-ton CO2 equivalent (Mt CO2e) in 2033 under the integrated (INT) scenario. Compared with the business as usual (BAU) scenario, INT will save energy by 24.21% in 2040 and reduce energy intensity from 0.4979 tons of CO2 equivalent/104 yuan (TCO2e/104 yuan) to 0.3761 Tce/104 yuan. Although the INT scenario has achieved promising effects of energy saving and carbon reduction, the peak year 2033 in the tourist industry is still later than China’s expected peak year of 2030. This is due to the growth potential and moderate carbon control measures in the tourist industry. Thus, in order to keep the tourist industry in synchronization with China’s peak goals, more stringent measures are needed, e.g., the promotion of clean fuel shuttle buses, the encouragement of low carbon tours, the cancelation of disposable toiletries and the recycling of garbage resources. The results of this simulation study will help set GHG emission peak targets in the tourist industry and formulate a low carbon roadmap to guide carbon reduction actions in the field of GHG emissions with greater certainty.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung

Nowadays, the global climate change has been a worldwide concern and the greenhouse gases (GHG) emissions are considered as the primary cause of that. The United Nations Conference on Environment and Development (UNCED) divided countries into two groups: Annex I Parties and Non-Annex I Parties. Since Iran and all other countries in the Middle East are among Non-Annex I Parties, they are not required to submit annual GHG inventory report. However, the global climate change is a worldwide phenomenon so Middle Eastern countries should be involved and it is necessary to prepare such a report at least unofficially. In this paper the terminology and the methods to calculate GHG emissions will first be explained and then GHG emissions estimates for the Iranian power plants will be presented. Finally the results will be compared with GHG emissions from the Canadian electricity generation sector. The results for the Iranian power plants show that in 2005 greenhouse gas intensity for steam power plants, gas turbines and combined cycle power plants were 617, 773, and 462 g CO2eq/kWh, respectively with the overall intensity of 610 g CO2eq/kWh for all thermal power plants. This GHG intensity is directly depend on efficiency of power plants. Whereas, in 2004 GHG intensity for electricity generation sector in Canada for different fuels were as follows: Coal 1010, refined petroleum products 640, and natural gas 523 g CO2eq/kWh, which are comparable with same data for Iran. For average GHG intensity in the whole electricity generation sector the difference is much higher: Canada 222 vs. Iran 610g CO2eq/kWh. The reason is that in Canada a considerable portion of electricity is generated by hydro-electric and nuclear power plants in which they do not emit significant amount of GHG emissions. The average GHG intensity in electricity generation sector in Iran between 1995 and 2005 experienced 13% reduction. While in Canada at the same period of time there was 21% increase. However, the results demonstrate that still there are great potentials for GHG emissions reduction in Iran’s electricity generation sector.


2017 ◽  
pp. 213-241
Author(s):  
Lidia Hrnčević

Greenhouse Gas (GHG) emissions occur, more or less, in all aspects of the petroleum industry's activities. Besides the direct emissions of some GHG, the petroleum industry is also characterised with high energy intensity usually followed by emissions of adverse gases, especially at old facilities, and also the products with high emission potential. Being the global industry and one of the major players on global market, the petroleum industry is also subjected to global regulatory provisions regarding GHG emissions. In this chapter, the impact of global climate change on the petroleum industry is discussed. The emissions from the petroleum industry are analysed with a special focus on greenhouse gases that occur in petroleum industry activities and types and sources of emissions from the petroleum industry activities. In addition, recommendations for estimation, monitoring, and reductions of GHG emissions from the petroleum industry are given.


Author(s):  
Francis Ferraro

The potential for global climate change due to the release of greenhouse gas (GHG) emissions is being debated both nationally and internationally. While many options for reducing GHG emissions are being evaluated, MSW management presents potential options for reductions and has links to other sectors (e.g., energy, industrial processes, forestry, transportation) with further GHG reduction opportunities.


Author(s):  
Serena Alexander ◽  
Asha Weinstein Agrawal ◽  
Benjamin Clark

This paper focuses on how cities can use climate action plans (CAPs) to ensure that on-demand mobility and autonomous vehicles (AVs) help reduce, rather than increase, greenhouse gas (GHG) emissions and inequitable impacts from the transportation system. We employed a three-pronged research strategy involving: (1) an analysis of the current literature on on-demand mobility and AVs; (2) a systematic content analysis of 23 CAPs and general plans (GPs) developed by municipalities in California; and (3) a comparison of findings from the literature and content analysis of plans to identify opportunities for GHG emissions reduction and mobility equity. Findings indicate that policy and planning discussions should consider the synergies between AVs and on-demand mobility as two closely related emerging mobility trends, as well as the key factors (e.g., vehicle electrification, fuel efficiency, use and ownership, access, and distribution, etc.) that determine whether the deployment of AVs would help reduce GHG emissions from transportation. Additionally, AVs and on-demand mobility have the potential to contribute to a more equitable transportation system by improving independence and quality of life for individuals with disabilities and the elderly, enhancing access to transit, and helping alleviate the geographic gap in public transportation services. Although many municipal CAPs and GPs in California have adopted several strategies and programs relevant to AVs and on-demand mobility, several untapped opportunities exist to harness the GHG emissions reduction and social benefits potential of AVs and on-demand mobility.


Author(s):  
Aaiysha Khursheed ◽  
George Simons ◽  
Brad Souza ◽  
Jennifer Barnes

Over the past few decades, interest in the effects of greenhouse gas (GHG) emissions on global climate change has peaked. Increasing temperatures worldwide have been blamed for numerous negative impacts on agriculture, weather, forestry, marine ecosystems, and human health. The U.S. Environmental Protection Agency reports that the primary GHG emitted in the U.S. is carbon dioxide (CO2), most of which stems from fossil fuel combustion [1]. In fact, CO2 represents approximately 85% of all GHG emissions nationwide. The other primary GHGs include nitrous oxide (N2O), methane (CH4), ozone (O3), and fluorinated gases. Since the energy sector is responsible for a majority of the GHGs released into the atmosphere, policies that address their mitigation through the production of electricity using renewable fuels and distributed generation are of significant interest. Use of renewable fuels and clean technologies to meet energy demand instead of relying on traditional electrical grid systems is expected to result in fewer CO2 and CH4 emissions, hence reducing global climate change impacts. Technologies considered cleaner include photovoltaics, wind turbines, and combined heat and power (CHP) devices using microturbines or internal combustion engines. The Self-Generation Incentive Program (SGIP) in California [2] provides incentives for the installation of these technologies under certain circumstances. This paper assesses the GHG emission impacts from California’s SGIP during the 2005 program year by estimating the reductions in CO2 and CH4 released when SGIP projects are in operation. Our analysis focuses on these emissions since these are the two GHGs characteristic of SGIP projects. Results of this analysis show that emissions of GHGs are reduced due to the SGIP. This is because projects operating under this program reduce reliance on electricity generated by conventional power plants and encourage the use of renewable fuels, such as captured waste heat and methane.


Author(s):  
Lidia Hrnčević

Greenhouse Gas (GHG) emissions occur, more or less, in all aspects of the petroleum industry's activities. Besides the direct emissions of some GHG, the petroleum industry is also characterised with high energy intensity usually followed by emissions of adverse gases, especially at old facilities, and also the products with high emission potential. Being the global industry and one of the major players on global market, the petroleum industry is also subjected to global regulatory provisions regarding GHG emissions. In this chapter, the impact of global climate change on the petroleum industry is discussed. The emissions from the petroleum industry are analysed with a special focus on greenhouse gases that occur in petroleum industry activities and types and sources of emissions from the petroleum industry activities. In addition, recommendations for estimation, monitoring, and reductions of GHG emissions from the petroleum industry are given.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1507
Author(s):  
Tom Volenzo Elijah ◽  
Rachel Makungo ◽  
Georges-Ivo Ekosse

Small-scale farming production systems are integral drivers of global sustainability challenges and the climate crisis as well as a solution space for the transition to climate compatible development. However, mainstreaming agricultural emissions into a climate action agenda through integrative approaches, such as Climate Smart Agriculture (CSA), largely reinforces adaptation–mitigation dualism and pays inadequate attention to institutions’ linkage on the generation of externalities, such as Greenhouse Gas (GHG) emissions. This may undermine the effectiveness of local–global climate risk management initiatives. Literature data and a survey of small-scale farmers’ dairy feeding strategies were used in the simulation of GHG emissions. The effect of price risks on ecoefficiencies or the amount of GHG emissions per unit of produced milk is framed as a proxy for institutional feedbacks on GHG emissions and effect at scale. This case study on small-scale dairy farmers in western Kenya illustrates the effect of local-level and sectoral-level institutional constraints, such as market risks on decision making, on GHG emissions and the effectiveness of climate action. The findings suggest that price risks are significant in incentivising the adoption of CSA technologies. Since institutional interactions influence the choice of individual farmer management actions in adaptation planning, they significantly contribute to GHG spillover at scale. This can be visualised in terms of the nexus between low or non-existent dairy feeding strategies, low herd productivity, and net higher methane emissions per unit of produced milk in a dairy value chain. The use of the Sustainable Food Value Chain (SFVC) analytical lens could mediate the identification of binding constraints, foster organisational and policy coherence, as well as broker the effective mainstreaming of agricultural emissions into local–global climate change risk management initiatives. Market risks thus provide a systematic and holistic lens for assessing alternative carbon transitions, climate financing, adaptation–mitigation dualism, and the related risk of maladaptation, all of which are integral in the planning and implementation of effective climate action initiatives.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Bin Chen ◽  
Guoxuan He ◽  
Jing Qi ◽  
Meirong Su ◽  
Shiyi Zhou ◽  
...  

Global climate change caused by greenhouse gas (GHG) emissions, which severely limits the development of human society and threatens the survival of humanity, has drawn the international community's long-term attention. Gathering the most important production factors in the region, an industrial park usually represents the development level of specific industries in the region. Therefore, the industrial park should be regarded as the base unit for developing a low-carbon economy and reducing GHG emissions. Focusing on a typical high-end industrial park in Beijing, we analyze the carbon sources within the system boundary and probe into the emission structure in view of life-cycle analysis. A GHG inventory is thereby set up to calculate all GHG emissions from the concerned park. Based on the results, suggestions are presented to guide the low-carbon development of the high-end industrial park.


2021 ◽  
Vol 13 (21) ◽  
pp. 12186
Author(s):  
Georgiana Moiceanu ◽  
Mirela Nicoleta Dinca

Greenhouse gases (GHG), such as carbon dioxide, methane, nitrous oxide, and other gases, are considered to be the main cause of global climate change, and this problem has received significant global attention. Carbon dioxide has been considered the most significant gas contributing to global climate change. Our paper presents an analysis of the greenhouse gas emissions in Romania along with a forecast for the years to come. For the study, data from the National Institute of Statistics and Eurostat were gathered and used for the analysis in order to present the results. To obtain the results, the data gathered were analyzed using forecasting methods that can be of help in solving some uncertainties that surround the future. The greenhouse gas (GHG) emissions trends in Romania were analyzed both for linear and exponential function methods. The obtained results showed that the linear function analysis of total GHG emissions in Romania had a forecast accuracy higher than the exponential function method. From the analytical methods used we can draw the conclusion that the emissions are on a descending scale and choosing a proper method is important in analyzing data.


Sign in / Sign up

Export Citation Format

Share Document