Improving the Durability of High Early Strength (HES) Concrete Patching Materials for Concrete Pavements

Author(s):  
Cameron Wilson ◽  
W. Jason Weiss

High early strength (HES) concrete patching materials are increasingly used to repair damaged pavements. The use of HES concrete enables the repaired pavement to be opened to traffic shortly after the repair has been installed; for example, opening pavements to traffic 4–6 h after the concrete is placed is becoming more common. HES concrete mixtures are typically designed with a low water-to-cement ratio and a high cement content; they contain accelerating admixtures and limited supplementary cementitious materials. As a result, these HES patches may be susceptible to self-desiccation, causing autogenous shrinkage and early age cracking. Self-desiccation can lead to reduced hydration, limited strength gain, and overestimation of strength development in maturity-based predictions. The objectives of this study are threefold. First, the paper will illustrate how self-desiccation can lead to the premature cessation of hydration and increased potential for shrinkage cracking. Second, the paper will illustrate how maturity-based predictions can be modified to account for self-desiccation. Third, internal curing is discussed as a way to mitigate self-desiccation and shrinkage ultimately improving the performance of HES concrete patching materials.

2010 ◽  
Vol 5 (4) ◽  
pp. 111-120
Author(s):  
John T Kevern

As green building rating systems such as LEED™ become more popular, the use of recycled materials in construction is increasing. Concrete can be produced with significant quantities of supplementary cementitious materials or recycled aggregate materials. However, modifying concrete mixture proportions for improved recycled content credits also impacts strength and long-term durability. Without properly understanding the effects recycled materials have on concrete, greener concrete can be less desirable from a lifecycle perspective from poor durability. This research investigates the impacts different types and quantities of supplementary cementitious materials and recycled concrete aggregate have on strength development and concrete durability, specifically deicer scaling. Improvements to deicer scaling resistance were investigated using a novel soybean oil sealer. The concrete mixtures were also evaluated within the LEED™ recycled materials criteria for selection based on economy and total contribution value. Considerations are included to assist designers in the selection of greener concrete mixtures for appropriate applications.


Author(s):  
Faisal Qadri ◽  
Christopher Jones

Concrete pavements tend to degrade at joints when concrete gets exposed to freeze-thaw cycles in the presence of moisture. In Kansas, U.S., one common repair method for deteriorated concrete pavement involves patching with high early strength concrete (HESC). For heavily trafficked routes and intersections, this is often done at night, so that the pavement can be opened to traffic next morning. Often, patched concrete shows poor durability lasting for just few years. HESC mixtures often include high cement content and low water-to-cement ratio. These factors lead to shrinkage that creates cracks which, in turn, facilitate the ingress of detrimental substances that eventually degrade patches. Internal curing (IC) has been explored in this study to improve the durability of HESC repair materials. Saturated lightweight aggregates and recycled crushed concrete were used to replace a portion of the virgin fine aggregates. Both mixtures were compared with a control mixture. These three mixtures were replicated for low and high cement contents. The test program focused on assessing two main performance indicators—strength development and durability. Durability testing included autogenous and drying shrinkage, and freeze-thaw cycling where relative dynamic modulus of elasticity, expansion, and mass change were measured. Target strengths were achieved in all mixtures. Autogenous shrinkage test results showed that IC significantly improves shrinkage potential and durability. For these mixtures, low cement content also appears to improve durability.


2021 ◽  
Vol 11 (9) ◽  
pp. 4028
Author(s):  
Asghar Gholizadeh Vayghan ◽  
Liesbeth Horckmans ◽  
Ruben Snellings ◽  
Arne Peys ◽  
Priscilla Teck ◽  
...  

This research investigated the possibility of using metallurgical slags from the copper and lead industries as partial replacement for cement. The studied slags were fayalitic, having a mainly ferro-silicate composition with minor contents of Al2O3 and CaO. The slags were treated at 1200–1300 °C (to reduce the heavy metal content) and then granulated in water to promote the formation of reactive phases. A full hydration study was carried out to assess the kinetics of reactions, the phases formed during hydration, the reactivity of the slags and their strength activity as supplementary cementitious material (SCM). The batch-leaching behaviour of cementitious mixtures incorporating treated slags was also investigated. The results showed that all three slags have satisfactory leaching behaviour and similar performance in terms of reactivity and contribution to the strength development. All slags were found to have mediocre reactivity and contribution to strength, especially at early ages. Nonetheless, they passed the minimum mechanical performance requirements and were found to qualify for use in cement.


2019 ◽  
Vol 4 ◽  
pp. 9-15
Author(s):  
Md Shamsuddoha ◽  
Götz Hüsken ◽  
Wolfram Schmidt ◽  
Hans-Carsten Kühne ◽  
Matthias Baeßler

Grouts have numerous applications in construction industry such as joint sealing, structural repair, and connections in precast elements. They are particularly favoured in rehabilitation of structures due to penetrability and convenience of application. Grouts for repair applications typically require high-performance properties such as rapid strength development and superior shrinkage characteristics. Sometimes industrial by-products referred as supplementary cementitious materials (SCM) are used with neat cement due to their capabilities to provide binding properties at delayed stage. Micro silica, fly ash and metakaolin are such SCMs, those can modify and improve properties of cement products. This study aims at investigating long-term mass loss and linear shrinkage along with long-term compressive and flexural strength for grouts produced from ultrafine cement and SCMs. A series of mixtures were formulated to observe the effect of SCMs on these grout properties. Properties were determined after 365 days of curing at 23oC and 55% relative humidity. The effect of SCMs on the properties are characterised by statistical models. Response surfaces were constructed to quantify these properties in relation to SCMs replacement. The results suggested that shrinkage was reduced by metakaolin, while micro silica and fly ash had positive effects on compressive and flexural strength, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Kanwaldeep Singh ◽  
Sukhpal Singh ◽  
Gurmel Singh

Six concrete mixtures were prepared with 0%, 20%, 30%, 40%, 50%, and 60% of flyash replacing the cement content and having constant water to cement ratio. The testing specimens were casted and their mechanical parameters were tested experimentally in accordance with the Indian standards. Results of mechanical parameters show their improvement with age of the specimens and results of radiation parameters show no significant effect of flyash substitution on mass attenuation coefficient.


2019 ◽  
Vol 289 ◽  
pp. 02005
Author(s):  
Ioanna Papayianni ◽  
Fotini Kesikidou ◽  
Philip Henes Alt

Shrinkage is one of the main reasons for mortar and concrete failures like curling, crack formation and de-bonding. It is a complex phenomenon due to many factors involved, such as the type and amount of cement, water to binder ratio, binder to aggregates ratio and the type and granulometry of the aggregates, relative humidity, air temperature and the temperature of concrete. To reduce this phenomenon, Shrinkage Reducing Admixtures (SRAs) have been studied over the last 30 years. On the other hand, investigation in the field of Supplementary Cementitious Materials (SCMs) has indicated that their use in concrete may improve its volume stability depending on their percentage and the type of the material. In this paper, the addition of a Shrinkage Reducing Admixture and Supplementary Cementitious Materials like ladle furnace slag, calcareous fly ash and limestone filler, were investigated. Their influence, separately and in combination, in volume stability and strength development of cement mortars was identified. Capillary absorption and open porosity were also determined.


Author(s):  
Khashayar Jafari ◽  
Farshad Rajabipour

Supplementary cementitious materials (SCMs) are natural or industrial by-product materials which are used to improve the performance, durability, and sustainability of concrete mixtures. Motivated by the recent reports on shortage of conventional SCMs, impure calcined clays (CCs) are receiving attention as abundant alternative pozzolans for concrete. In this study, a clay slurry resulting from washing aggregates in a commercial sand and gravel pit was investigated. This source clay was dried and calcined, and the properties and pozzolanic performance of the resulting CC was evaluated. It was observed that despite having a large (>50%wt.) inert quartz content, the CC met all ASTM C618-19 (AASHTO M295) requirements for natural pozzolan. A pavement-grade concrete mixture containing 20%CC as a cement replacement (by weight) produced desired workability and fresh and hardened air content. Strength development was slightly below the control. The use of CC improved the durability of concrete with respect to chloride penetration, alkali–silica reaction, and drying shrinkage in comparison with a control (100% Portland cement) mixture. In addition, ternary limestone-calcined clay–cement and slag-calcined clay–cement mortar mixtures showed excellent strength development while replacing nearly 50% of the Portland cement.


Author(s):  
W. Micah Hale ◽  
Thomas D. Bush ◽  
Bruce W. Russell ◽  
Seamus F. Freyne

Often, concrete is not mixed or placed under ideal conditions. Particularly in the winter or the summer months, the temperature of fresh concrete is quite different from that of concrete mixed under laboratory conditions. This paper examines the influence of supplementary cementitious materials on the strength development (and other hardened properties) of concrete subjected to different curing regimens. The supplementary cementitious materials used in the research program were ground granulated blast furnace slag (GGBFS), fly ash, and a combination of both materials. The three curing regimens used were hot weather curing, standard curing, and cold weather curing. Under the conditions tested, the results show that the addition of GGBFS at a relatively low replacement rate can improve the hardened properties for each curing regimen. This improvement was noticeable not only at later ages but also at early ages. Mixtures that contained both materials (GGBFS and fly ash) performed as well as and, in most cases, better than mixtures that contained only portland cement in all curing regimens.


Sign in / Sign up

Export Citation Format

Share Document