Characterizing Influence of Water Access Condition during Freezing on Resilient Behavior of Alaskan Base Course Materials

Author(s):  
Lin Li ◽  
Jenny Liu ◽  
Xiong Zhang ◽  
Steve Saboundjian ◽  
Peng Li

Accurate characterization of the resilient behavior of the base course materials under different climatic conditions is critical for the design of reliable and cost-effective pavement structures. In Alaska, the resilient behavior of base course materials usually undergoes significant variation due to seasonal change and extreme climatic conditions. Previous studies have revealed that the resilient behavior of base course materials could be significantly influenced by the freezing process. In this study, the freezing process under two extreme conditions (i.e., free and no water access conditions) that base course materials could possibly experience in the field was simulated using a one-dimensional frost heave cell. The influences of the water access condition during freezing on the frost heave and resilient modulus (MR) of the base course materials with different fines and initial water contents was assessed based on the results from the freezing process and repeated load triaxial tests. A pressure plate test was also performed to build the relationship between suction and water content of soils with different fines content. Suction was then introduced to model MR of the materials tested under unfrozen conditions before and after a freeze–thaw cycle. The adoption of suction significantly simplified the equation for MR prediction. Finally, structural analyses were conducted using BISAR and Alaska Flexible Pavement Design (AKFPD) software and the results revealed that free water access during freezing can significantly accelerate cracking and reduce pavement service life.

2008 ◽  
Vol 45 (7) ◽  
pp. 895-909 ◽  
Author(s):  
J.-M. Konrad

Ramped-freezing tests were conducted on three base-course materials with fines contents of less than 7% and compacted at different initial states but always at degrees of saturation near or well below 60%. Three different quarries were studied. The natural fines from crushed gneiss with biotite, limestone, and monzonite were all frost susceptible. Frost heave was relatively small, but significant water intake occurred in all samples during freezing with access to an external water source, regardless of initial saturation level. The frost susceptibility of coarse-grained soils cannot be solely evaluated with respect to frost heave but needs also to consider the amount of water drawn to the freezing front during the freezing process and the consequences of this water during thaw. The normalized heave of the base-course layer of pavements is a practical and efficient indicator of the frost susceptibility of the base-course aggregates. If it is larger than 1%, the base-course material can be considered as frost susceptible leading to a significant increase in the degree of saturation once frozen. Current base-course material specifications based solely on grain-size distribution are not adequate to differentiate materials that are nonfrost susceptible from those that are frost susceptible. Hence, an additional criterion based on the fines frost susceptibility should be considered.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-14
Author(s):  
Paula Pascoal ◽  
Amanda Sagrilo ◽  
Magnos Baroni ◽  
Luciano Specht ◽  
Deividi Pereira

This article presents the study of the resilient behavior of three soil horizons from a deposit of lateritic soil employed in a pavement structure in Rio Grande do Sul, Brazil. The use of lateritic soils in pavement layers is a common practice in Brazil and due to its peculiarities, its behavior must be investigated. The methodology consisted of physical and chemical characterization and resilient modulus determination. Samples from the three horizons, compacted at standard, intermediate and modified energy, were analyzed. In addition, undisturbed samples extracted from the interior and top layer of the embankment were submitted to repeated load triaxial tests for resilient modulus determination. The results indicated that the soil exhibit good behavior for pavement subgrade applications, perhaps as subbase or base course layers. The compound and universal models yielded the best correlation coefficients. Furthermore, the results showed that as the compaction energy increased, the resilient modulus also increased, as long as they are within the optimum water content and compaction degree limit. However, when subjected to immersion in water for four days, the resilient behavior decreased about 73% in relation to unsaturated samples.


Author(s):  
Munir D. Nazzal ◽  
Louay N. Mohammad ◽  
Aaron Austin ◽  
Ahmad Al Hosainat

This paper summarizes the results of a laboratory testing program that was conducted to determine the effects of moisture content on the shakedown limits of unbound granular base materials. Two different types of granular base materials were investigated in this study, namely limestone and sandstone. Multi-stage repeated load triaxial tests were performed on these materials. The results of the tests were analyzed within the framework of the shakedown theory. The results indicate that the moisture content had an influence on the slope of the elastic and plastic shakedown limits lines. The effect of the moisture content was more pronounced on the slope of the elastic shakedown limit line, however. The moisture content affected the intercept of the elastic and plastic shakedown limits lines more significantly than the slope of these lines. The limestone material exhibited greater decrease in the intercept of the elastic and plastic shakedown limits with increase in moisture content compared with the sandstone material. This was explained by the limestone’s finer gradation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhongnian Yang ◽  
Xuesen Liu ◽  
Liang Zhang ◽  
Fujun Niu ◽  
Xianzhang Ling ◽  
...  

Expansive soil has a significant impact on the stability of many key construction projects in cold regions. To study the physical and mechanical properties of expanded soil under the condition of freeze-thaw cycle, cryogenic cyclic triaxial tests were conducted on the dynamic and the displacement characteristics of geosynthetic-reinforced expansive soil subjected to the freeze-thaw cycles. Compared with the unreinforced expansive soil samples, the effects of freeze-thaw cycles on the soil dynamics were discussed. The dynamic shear modulus (Gd) and damping ratio (λ) of the expansive soil samples are improved by reinforcement. Reinforced soil can inhibit the axial compression of the sample and restrain the frost heave deformation of the sample during the freezing process. Meanwhile, it can delay the structural damage effect caused by frost heave and reduce the rate of change of the Gd and the λ with the freeze-thaw cycle. At the same time, reinforced soil can inhibit the axial expansion, reduce the rate of reduction of the Gd, stabilize it with a higher rate, and reduce the influence of the freeze-thaw cycles on the λ of the expansive soil sample. Finally, the change of mechanical properties of expansive soil under the condition of reinforcement is obtained. The main conclusions of this paper can be used to reinforce the roadbed and foundation engineering of frozen soil in a cold region and provide support for the fiber reinforcement method of expansive soil.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Man Huang ◽  
Bin Tang ◽  
Jianliang Jiang ◽  
Renqiu Guan ◽  
Huajun Wang

The freeze-thaw duration is one of the important factors affecting the change of rock properties. However, this factor has not formed a unified standard in the freeze-thaw cycle test. This study uses saturated tuff samples taken from eastern Zhejiang, China, as research objects to explore the change law of the time required for the rock to reach a full freeze-thaw cycle. Measured results show that the total duration of the freeze-thaw cycle presents an increasing power function with the increase in the number of freeze-thaw cycles. The freezing process is divided into three phases: initial freezing, water-ice phase transition, and deep freezing. The melting process is also divided into three phases: initial melting, ice-water phase transition, and deep melting. The time required for the ice-water phase change stage of the melting process does not change with the increase in the number of freeze-thaw cycles, while the other stages increase as a power function. The proportion of duration of each stage in the freezing process does not change with the increase in the number of cycles. By contrast, the duration proportion of the initial melting phase in the melting process decreases, and the deep melting phase increases. Experimental results of the freeze-thaw cycles of tuff demonstrate that the freeze-thaw duration of the freeze-thaw cycles within 40 times can be set to 9 h. The freezing and melting processes are 6 and 3 h, respectively.


Author(s):  
Karen S. Henry

The use of geotextiles to mitigate frost effects in soils has been studied, but few techniques have been developed. Guidelines developed for the placement of granular capillary barriers are presented to serve as preliminary guidelines for geotextile capillary barriers. Laboratory research shows that pore size distribution, wettability, and, for some geotextiles, thickness influence capillary barrier performance in a given soil. Geotextiles that easily wet do not reduce frost heave and may even exacerbate it. On the basis of the literature reviewed, guidance for selection of geotextile capillary barriers in field trials is given. If geotextiles function as capillary barriers during freezing and reinforce or separate and filter the subgrade at the base course interface during thaw, then the potential exists for their use in a combination of functions to reduce frost-related damage in geotechnical structures. It was found that properly designed geotextiles have the potential to reduce frost heave by functioning as capillary barriers, they can be filters for capillary barriers, and they can provide reinforcement or separation or filtration (or all of these) of the subgrade soil to reduce thaw-related damage.


2017 ◽  
Vol 13 (1) ◽  
pp. 207-217 ◽  
Author(s):  
Guo-qing Zhou ◽  
Yang Zhou ◽  
Kun Hu ◽  
Yi-jiang Wang ◽  
Xiang-yu Shang

2016 ◽  
Vol 143 ◽  
pp. 828-835 ◽  
Author(s):  
Shinichiro Kawabata ◽  
Tatsuya Ishikawa ◽  
Shuichi Kameyama

Author(s):  
Yuhui Li ◽  
Fen Wang ◽  
Yanyan Lu ◽  
Hao Wang

Cryotherapy is a prospective also green method for malignant tumor treatment. At low temperature, the cell viability relates with the cooling rate, temperature threshold, freezing interface as well as ice formation. In this paper a series of directional freezing processes and cell responses in a culture microchip were experimentally investigated. The temperature in the microchip was manipulated by a thermoelectric cooler. The surviving cells, necrotic and apoptotic cells under different cryotreatment (duration of the freezing process, freeze-thaw cycle, post-culture et al) were stained and distinguished by PI and FITC-Annexin V. The locations of the ice front and cell death boundary were observed and recorded through an inverted microscopy. By controlling the cooling process in a microfluidic channel, it is possible to recreate a sketch of biological effect during the process of simulated cryosurgery.


Sign in / Sign up

Export Citation Format

Share Document