Performance of Hot and Cold Recycled Mixtures with High Reclaimed Asphalt Pavement Content

Author(s):  
Edith Arámbula-Mercado ◽  
Santiago J. Chavarro-Muñoz ◽  
Sheng Hu ◽  
Howie Moseley

Florida Department of Transportation yearly maintenance and rehabilitation activities include milling and resurfacing of approximately 2,000 lane miles of roadway, with an average resurfacing depth of about 2.1 in. (55 mm). These activities result in the generation and accumulation of roughly 1.8 million tons of reclaimed asphalt pavement (RAP) each year. The use of elevated quantities of RAP in asphalt pavement provides an environmentally responsible solution to the accumulated RAP surplus in some urban areas, while at the same time offering an economical pavement maintenance and rehabilitation option to local agencies facing budget constraints. The objective of this project was to compare the performance of mixtures with 60% RAP content to be used primarily on low volume roads (average daily traffic <750 vehicles) and suggest adequate test methods within the context of a balanced mix design approach. To accomplish this objective, three types of mixtures were considered: hot, cold with emulsion, and cold with foamed binder. Performance testing included intermediate temperature cracking, rutting, moisture susceptibility, and durability. The hot recycled mixtures showed good moisture susceptibility and cracking resistance, especially when rejuvenators were incorporated. The cold recycled mixtures showed poor moisture susceptibility and durability characteristics, which were alleviated when hydrated lime or Portland cement was incorporated in the emulsified and foamed mixtures, respectively. Most hot recycled mixtures, and all the cold recycled mixtures, exhibited poor rutting behavior, likely because of the harsh conditions of the test. A life-cycle cost analysis demonstrated more favorable savings when cold recycled mixtures were used.

2019 ◽  
Vol 11 (19) ◽  
pp. 5414 ◽  
Author(s):  
Yaning Qiao ◽  
Eshan Dave ◽  
Tony Parry ◽  
Omar Valle ◽  
Lingyun Mi ◽  
...  

Reclaimed asphalt pavement (RAP) has received wide application in asphalt pavement construction and maintenance and it has shown cost-effectiveness over virgin hot mix asphalt (HMA). HMA with a high content of reclaimed asphalt (RA) (e.g., 40%) is sometimes used in practice, however, it may have significant adverse effects on the life cycle performance and related costs. In particular, challenges may arise as the life cycle performance of RAP is also affected by local climatic conditions. Thus, it is important to investigate whether it is still economic to use RAP under future local climate, with consideration of life cycle performance. A case study was conducted for various road structures on Interstate 95 (I-95) in New Hampshire (NH), USA for the investigation. The case study utilized dynamic modulus testing results for local virgin HMA and HMA with 40% RA (as major material alternatives) to predict life cycle performance of the selected pavement structures, considering downscaled future climates. Then, a life cycle cost analysis (LCCA) was considered to estimate and compare the life cycle cash flow of the investigated road structures. Responsive maintenance (overlay) and effectiveness were also considered in this study. It was found that using 40% RA in HMA can reduce agency costs by up to approximately 18% under the 2020–2040 predicted climate and NH should consider this practice under predicted future climate to reduce agency costs.


Author(s):  
Walaa S. Mogawer ◽  
Alexander J. Austerman ◽  
Robert Kluttz ◽  
Michael Roussel

A high-performance thin asphalt overlay (HPThinOL) is specified as having a thickness of 1 in. or less and is used in applications requiring high levels of rutting and fatigue resistance. HPThinOLs are used as a pavement preservation strategy and are placed on pavements that have remaining structural capacity that is expected to outlive that strategy. Current specifications for HPThinOLs generally call for a polymer-modified asphalt (PMA). However, PMA binders are more expensive than unmodified asphalt binders. This expense, coupled with the higher binder content requirement generally associated with HPThinOL, could lead to an initial higher cost in relation to other pavement preservation strategies. Although the higher initial cost can be offset by incorporating high amounts of reclaimed asphalt pavement (RAP), the use of high amounts of RAP in PMA mixtures might adversely affect the mixture performance (stiffness, cracking, or workability). Warm-mix asphalt (WMA) technology may improve the workability of HPThinOL that incorporates high RAP content and PMA binders. This study evaluated the effect of PMA binders, high RAP content, and WMA technology on the stiffness, resistance to reflective cracking, moisture susceptibility, and workability of HPThinOL mixtures. PMA binders and high RAP content increased the stiffness of HPThinOL significantly; however, the use of WMA technology lowered mixture stiffness and improved workability. PMA may improve the cracking resistance, moisture susceptibility, and rutting resistance of high-RAP HPThinOL mixtures, depending on whether a WMA technology is used.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 520
Author(s):  
Chun Li ◽  
Jian Ouyang ◽  
Peng Cao ◽  
Jingtao Shi ◽  
Wenting Yang ◽  
...  

A traditional cold recycled mixture with bitumen emulsion (CRMB) has a relatively low cracking resistance and moisture susceptibility, which greatly limits its application scope. A rejuvenating agent was employed to improve the pavement properties of CRMB. To avoid the rejuvenating agent having an adverse effect on the new bitumen, reclaimed asphalt pavement (RAP) was firstly treated by the rejuvenating agent, and the effect of rejuvenating time on the pavement properties of CRMB was investigated. Results indicate that the addition of a rejuvenating agent can greatly improve the ductility and moisture susceptibility of CRMB. Meanwhile, although the rejuvenating agent can soften aged bitumen, the addition of a rejuvenating agent can still increase the indirect tensile strength of CRMB and does not greatly reduce the rutting resistance of CRMB. This phenomenon exists because the rejuvenating agent can be both beneficial to the membrane structure of the bitumen emulsion mastic and aged bitumen. It can also greatly improve the bonding interface between RAP and the bitumen emulsion mastic. The rejuvenating time between RAP and the rejuvenating agent can affect the pavement properties of CRMB. To obtain better pavement properties, the optimum recommended rejuvenating time is between 5 and 7 days. Overall, the addition of rejuvenating agent can be a good choice to improve the pavement properties of CRMB.


Author(s):  
Walaa S. Mogawer ◽  
Kevin Stuart ◽  
Alexander J. Austerman ◽  
Ahmed A. Soliman

Laboratory-based studies have been conducted considering the incorporation of warm mix asphalt (WMA) technologies in paving mixtures both excluding and including reclaimed asphalt pavement (RAP). However, little research has been conducted to date that further advances the knowledge of WMA technologies in combination with high RAP contents beyond experiments using laboratory fabricated mixtures. The objective of this study was to expand on the existing laboratory research by investigating the moisture susceptibility, fatigue cracking and thermal cracking performances of plant-produced mixtures incorporating various WMA technologies and RAP contents. Nine 12.5-mm superpave mixtures were produced in two drum plants using three WMA technologies and three RAP contents. The three WMA technologies used were wax-based SonneWarmix™, chemical-based Evotherm®, and the Stansteel ACCU-SHEAR™ foaming process. Post production moisture in each mixture was negligible, which means that moisture had no effect on the laboratory mixture performance. The quality of blending analyses showed that the majority of the mixtures had poor blending, which would indicate that there should be performance issues with many of these mixtures. However, the quality of blending had no apparent effect on the laboratory mixture performance. It did not explain any poor performance or any difference in performance. Overall, some WMA with RAP contents up to approximately 50% RAP provided an acceptable laboratory performance. Fatigue cracking was the primary failure mode. Field trials or full-scale pavement accelerated tests with rigorous pavement monitoring are needed to confirm the findings of this study.


Author(s):  
Ram Kumar Veeraragavan ◽  
Rajib B. Mallick ◽  
Mingjiang Tao ◽  
Martins Zaumanis ◽  
Robert Frank ◽  
...  

The Maine Department of Transportation (DOT) currently allows 20% reclaimed asphalt pavement (RAP) in base and intermediate courses. To help the Maine DOT decide whether RAP could be increased to 50%, this study evaluated the critical laboratory properties of hot-mix asphalt with 50% RAP materials and rejuvenator. The scope of work consisted of preparing 20% and 50% RAP mixes with and without rejuvenators and testing compacted specimens for their volumetric properties, moduli, indirect tensile strength, moisture susceptibility, and low- and intermediate-temperature cracking potential. Two rejuvenators were used: ( a) generic waste vegetable oil and ( b) proprietary, commercially available rejuvenator. Virgin binder, extracted RAP binder, and extracted binder from recycled mixes were tested for continuous performance grading. The results showed that rejuvenators improved the properties of high RAP mixes, and the performance of rejuvenated 50% RAP mixes was equal to that of the currently allowed 20% RAP mixes. Results from semicircular bending tests were used to evaluate and quantify the effect of rejuvenators on mixes with high RAP content. Field trials of 50% RAP mixes were recommended as a result of the study.


2021 ◽  
Vol 11 (11) ◽  
pp. 5226
Author(s):  
Md Zahid Hossain Khan ◽  
Suhana Koting ◽  
Herda Yati Binti Katman ◽  
Mohd Rasdan Ibrahim ◽  
Ali Mohammed Babalghaith ◽  
...  

The utilisation of reclaimed asphalt pavement (RAP) as a suitable substitute for natural aggregate and binder offers an energy-saving and cost-effective approach to enhance the performance of asphalt mix. Realising the potential use of RAP as a promising recycling technique, many countries are seeking to recycle RAP as part of the global effort to address the rising challenge of climate change and contribute to a sustainable environment. This study aimed to develop an integrated approach to determine the amount of RAP to be used in an asphaltic concrete wearing course with 14 mm nominal maximum aggregate size (ACW14). The RAP was incorporated with two waste materials comprising waste engine oil (WEO) as a rejuvenator and Crumb Rubber (CRM) as a binder modifier. A total of five different mixes, which include R0 (control mix), R30, R50, R70, and R100 (replacement of 30%, 50%, 70%, and 100% of RAP aggregates in the mix, respectively) were evaluated. The Marshall parameters, resilient modulus (MR), indirect tensile fatigue, moisture susceptibility, and mass loss (ML) tests were conducted to investigate the performance of each mix. Finally, an arbitrary scale was developed to optimise the RAP content. The results showed that the Marshall parameters, moisture susceptibility, and ML values of the RAP mixes met the criteria outlined in the standard. According to the MR performance, the R50, R70, and R100 mixes were more resilient than the R0. In terms of fatigue resistance, the R30, R50, and R70 mixes showed better performance than the R0. Overall, the collective performance of all RAP mixes was above the R0 and it increased with the increment of RAP content. Therefore, it was possible to design ACW14 mixes with up to 100% RAP in combination with WEO and CRM.


2016 ◽  
Vol 43 (4) ◽  
pp. 343-350 ◽  
Author(s):  
Xuan Dai Lu ◽  
Mofreh Saleh

Using reclaimed asphalt pavement (RAP) increases the sustainability benefits and can enhance the performance of warm mix asphalt (WMA) compared to traditional hot mix asphalt (HMA). However, the RAP content is generally limited in WMA because adding high RAP content may reduce the performance of WMA. In this paper, the authors studied the possibility of incorporating high RAP content from 25 to 70% by mass of WMA by using Evotherm as an additive. Laboratory performance of WMA–RAP mixtures was characterized and compared to a control HMA in terms of moisture susceptibility, rutting resistance, and fatigue characterization. Test results showed that Evotherm greatly improved the moisture resistance of WMA–RAP mixtures compared to HMA. Increasing RAP content made WMA–RAP mixtures stiffer and enhanced the rutting resistance, but decreased the fatigue resistance of the mixtures. Therefore, the maximum RAP content needs to be determined to ensure balance between the fatigue and rutting characteristics of asphalt mixtures.


Author(s):  
Tiruwork Mulatu ◽  
◽  
Biruk Yigezu ◽  
Anteneh Geremew ◽  
◽  
...  

The main objective of this study was to evaluate the suitability of recycled asphalt aggregate with fresh aggregate in hot mix asphalt production by using experimental laboratory investigation. Also, Non-probable sampling techniques were adopted to collect a sample. The engineering properties of extracted Reclaimed asphalt pavement aggregate and the fresh crushed aggregate were identified based on standard specification before starting the Marshall Mix design, Then the Marshall Stability test was conducted on crushed aggregate with three different aggregate gradation sizes 5.0%, 5.5% and 6.0% by weight of aggregates and with five different bitumen content 4.0%, 4.5%, 5.0%, 5.5% and 6.0% by weight of total mix. Depending on the selected aggregate gradation Marshall Stability test was conducted for reclaimed asphalt pavement aggregate with a replacement rate of 5.0%, 15%, 25%, 35%, 45%, 55%, and 65% by weight of crushed aggregate to determine its optimum bitumen content according to National Asphalt Pavement Association method (NAPAM). A total of 64 mix designs and 190 specimens were prepared. Hence, Marshall Stability and Moisture Susceptibility test with 3-trials, hence rutting test with 2-trials. From 190 specimens, 45 were for the control mix, 105 were for replacement proportion, 36 were for Moisture Susceptibility and 4 were for Rutting Based on the Marshall Test results and their performance tests such as Moisture Susceptibility and Rutting was performed to maximum allowable replacement percentage was compared with standard specification. The optimum bitumen content result obtained in percent was 5.1, 5.04, 4.98, 4.87, 4.81, 4.74, 4.67 and 4.53 for 0 % (control), 5.0%, 15%, 25%, 35%, 45%, 55% and 65%, respectively. The experimental value of Tensile Strength Ratio, proportional rut depth and mean rut depth on 45% RAPA replacement was 85.42% and 4.48 %, 2.24 mm respectively. Finally, the test result obtained from the marshal stability and the performance testes indicates that up to 45% replacement of aggregate is reclaimed asphalt pavement aggregate in hot mix asphalt production satisfies the standard specification.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hesham A. Ali ◽  
Farshad Haddadi ◽  
Mojtaba Mohammadafzali ◽  
Greg Sholar ◽  
Howard Moseley

The use of Reclaimed Asphalt Pavement (RAP) in virgin mixtures is an effective means of promoting sustainability. The objective of this research was to investigate the effect of rejuvenated binder on the rutting performance and moisture susceptibility of high RAP content mixtures. All mixtures were tested at three aging levels, one short-term aging level, and two long-term aging levels. The performance of the specimens and the level of diffusion were measured and compared, and the correlation between binder test and rutting test results was evaluated. Based on the results, the degree of diffusion is not a determining factor in the performance of the mixture. However, the amount of the rejuvenator and Superpave performance grading (PG) of the rejuvenated binder is the most effective parameter. Results indicate that the short-term aged recycled mix exhibits a better rutting resistance than the virgin mix when its HTPG is 6°C higher than the virgin mix.


Sign in / Sign up

Export Citation Format

Share Document