Utilization and Cost Estimation Models for Highway Fleet Equipment

Author(s):  
Mehrdad Tajalli ◽  
Amir Mirheli ◽  
Ali Hajbabaie ◽  
Leila Hajibabai

Highway agencies need to manage the utilization of their highway equipment assets to reduce fleet management costs, balance equipment use, and provide the required services. Predictive equipment utilization and operational cost models are required for optimal management; however, there are no widely accepted models for this purpose. Although the utilization data is collected by state DOTs, the literature does not show any specific statistical model to predict equipment utilization as a function of contributing factors such as asset age, fleet size, costs, and demand for service. This study will bridge this gap and develop a predictive model to estimate the utilization of fleet equipment. The main objective of this paper is to develop a set of predictive models to estimate the annual utilization of seven non-stationary highway equipment types based on several explanatory variables including their annual fuel cost, downtime hours, age, and weight. Furthermore, another set of models are fit to predict the annual operational cost for these equipment types based on the most important contributing factors. The prediction models are developed after a nationwide data collection. Several years of collected data from seven states are processed and used for model development. This research has identified annual mileage as an appropriate and widely used utilization metric. Various model structures to predict annual mileage are considered. The logarithmic function of annual mileage has provided the most appropriate structure. The final annual mileage predictive models have R-squared values that are between 0.65 and 0.89, which indicates a good fit for all models. The models are validated by performing several statistical tests and they have satisfied all required assumptions of regression analysis. The result of modeling and statistical analysis showed that the proposed models accurately estimated the utilization and operational cost for highway equipment assets.

Author(s):  
Panagiota Chatzipetrou

Software cost estimation (SCE) is a critical phase in software development projects. A common problem in building software cost models is that the available datasets contain projects with lots of missing categorical data. There are several techniques for handling missing data in the context of SCE. The purpose of this article is to show a state-of-art statistical and visualization approach of evaluating and comparing the effect of missing data on the accuracy of cost estimation models. Five missing data techniques were used: multinomial logistic regression, listwise deletion, mean imputation, expectation maximization and regression imputation; and compared with respect to their effect on the prediction accuracy of a least squares regression cost model. The evaluation is based on various expressions of the prediction error. The comparisons are conducted using statistical tests, resampling techniques and visualization tools like the regression error characteristic curves.


Author(s):  
Byunghyun Kang ◽  
Cheol Choi ◽  
Daeun Sung ◽  
Seongho Yoon ◽  
Byoung-Ho Choi

In this study, friction tests are performed, via a custom-built friction tester, on specimens of natural rubber used in automotive suspension bushings. By analyzing the problematic suspension bushings, the eleven candidate factors that influence squeak noise are selected: surface lubrication, hardness, vulcanization condition, surface texture, additive content, sample thickness, thermal aging, temperature, surface moisture, friction speed, and normal force. Through friction tests, the changes are investigated in frictional force and squeak noise occurrence according to various levels of the influencing factors. The degree of correlation between frictional force and squeak noise occurrence with the factors is determined through statistical tests, and the relationship between frictional force and squeak noise occurrence based on the test results is discussed. Squeak noise prediction models are constructed by considering the interactions among the influencing factors through both multiple logistic regression and neural network analysis. The accuracies of the two prediction models are evaluated by comparing predicted and measured results. The accuracies of the multiple logistic regression and neural network models in predicting the occurrence of squeak noise are 88.2% and 87.2%, respectively.


BMJ Open ◽  
2017 ◽  
Vol 7 (8) ◽  
pp. e014607 ◽  
Author(s):  
Marion Fahey ◽  
Anthony Rudd ◽  
Yannick Béjot ◽  
Charles Wolfe ◽  
Abdel Douiri

IntroductionStroke is a leading cause of adult disability and death worldwide. The neurological impairments associated with stroke prevent patients from performing basic daily activities and have enormous impact on families and caregivers. Practical and accurate tools to assist in predicting outcome after stroke at patient level can provide significant aid for patient management. Furthermore, prediction models of this kind can be useful for clinical research, health economics, policymaking and clinical decision support.Methods2869 patients with first-ever stroke from South London Stroke Register (SLSR) (1995–2004) will be included in the development cohort. We will use information captured after baseline to construct multilevel models and a Cox proportional hazard model to predict cognitive impairment, functional outcome and mortality up to 5 years after stroke. Repeated random subsampling validation (Monte Carlo cross-validation) will be evaluated in model development. Data from participants recruited to the stroke register (2005–2014) will be used for temporal validation of the models. Data from participants recruited to the Dijon Stroke Register (1985–2015) will be used for external validation. Discrimination, calibration and clinical utility of the models will be presented.EthicsPatients, or for patients who cannot consent their relatives, gave written informed consent to participate in stroke-related studies within the SLSR. The SLSR design was approved by the ethics committees of Guy’s and St Thomas’ NHS Foundation Trust, Kings College Hospital, Queens Square and Westminster Hospitals (London). The Dijon Stroke Registry was approved by the Comité National des Registres and the InVS and has authorisation of the Commission Nationale de l’Informatique et des Libertés.


2021 ◽  
Author(s):  
Hossein Estiri ◽  
Zachary Strasser ◽  
Sina Rashidian ◽  
Jeffrey Klann ◽  
Kavishwar Wagholikar ◽  
...  

The growing recognition of algorithmic bias has spurred discussions about fairness in artificial intelligence (AI) / machine learning (ML) algorithms. The increasing translation of predictive models into clinical practice brings an increased risk of direct harm from algorithmic bias; however, bias remains incompletely measured in many medical AI applications. Using data from over 56 thousand Mass General Brigham (MGB) patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we evaluate unrecognized bias in four AI models developed during the early months of the pandemic in Boston, Massachusetts that predict risks of hospital admission, ICU admission, mechanical ventilation, and death after a SARS-CoV-2 infection purely based on their pre-infection longitudinal medical records. We discuss that while a model can be biased against certain protected groups (i.e., perform worse) in certain tasks, it can be at the same time biased towards another protected group (i.e., perform better). As such, current bias evaluation studies may lack a full depiction of the variable effects of a model on its subpopulations. If the goal is to make a change in a positive way, the underlying roots of bias need to be fully explored in medical AI. Only a holistic evaluation, a diligent search for unrecognized bias, can provide enough information for an unbiased judgment of AI bias that can invigorate follow-up investigations on identifying the underlying roots of bias and ultimately make a change.


2014 ◽  
Author(s):  
◽  
Oluwaseun Kunle Oyebode

Streamflow modelling remains crucial to decision-making especially when it concerns planning and management of water resources systems in water-stressed regions. This study proposes a suitable method for streamflow modelling irrespective of the limited availability of historical datasets. Two data-driven modelling techniques were applied comparatively so as to achieve this aim. Genetic programming (GP), an evolutionary algorithm approach and a differential evolution (DE)-trained artificial neural network (ANN) were used for streamflow prediction in the upper Mkomazi River, South Africa. Historical records of streamflow and meteorological variables for a 19-year period (1994- 2012) were used for model development and also in the selection of predictor variables into the input vector space of the models. In both approaches, individual monthly predictive models were developed for each month of the year using a 1-year lead time. Two case studies were considered in development of the ANN models. Case study 1 involved the use of correlation analysis in selecting input variables as employed during GP model development, while the DE algorithm was used for training and optimizing the model parameters. However in case study 2, genetic programming was incorporated as a screening tool for determining the dimensionality of the ANN models, while the learning process was further fine-tuned by subjecting the DE algorithm to sensitivity analysis. Altogether, the performance of the three sets of predictive models were evaluated comparatively using three statistical measures namely, Mean Absolute Percent Error (MAPE), Root Mean-Squared Error (RMSE) and coefficient of determination (R2). Results showed better predictive performance by the GP models both during the training and validation phases when compared with the ANNs. Although the ANN models developed in case study 1 gave satisfactory results during the training phase, they were unable to extensively replicate those results during the validation phase. It was found that results from case study 1 were considerably influenced by the problems of overfitting and memorization, which are typical of ANNs when subjected to small amount of datasets. However, results from case study 2 showed great improvement across the three evaluation criteria, as the overfitting and memorization problems were significantly minimized, thus leading to improved accuracy in the predictions of the ANN models. It was concluded that the conjunctive use of the two evolutionary computation methods (GP and DE) can be used to improve the performance of artificial neural networks models, especially when availability of datasets is limited. In addition, the GP models can be deployed as predictive tools for the purpose of planning and management of water resources within the Mkomazi region and KwaZulu-Natal province as a whole.


2021 ◽  
Author(s):  
Iva Halilaj ◽  
Avishek Chatterjee ◽  
Yvonka van Wijk ◽  
Guangyao Wu ◽  
Brice van Eeckhout ◽  
...  

AbstractObjectiveThe current pandemic has led to a proliferation of predictive models being developed to address various aspects of COVID-19 patient care. We aimed to develop an online platform that would serve as an open source repository for a curated subset of such models, and provide a simple interface for included models to allow for online calculation. This platform would support doctors during decision-making regarding diagnoses, prognoses, and follow-up of COVID-19 patients, expediting the models’ transition from research to clinical practice.MethodsIn this proof-of-principle study, we performed a literature search in PubMed and WHO database to find suitable models for implementation on our platform. All selected models were publicly available (peer reviewed publications or open source repository) and had been validated (TRIPOD type 3 or 2b). We created a method for obtaining the regression coefficients if only the nomogram was available in the original publication. All predictive models were transcribed on a practical graphical user interface using PHP 8.0.0, and published online together with supporting documentation and links to the associated articles.ResultsThe open source website https://covid19risk.ai/ currently incorporates nine models from six different research groups, evaluated on datasets from different countries. The website will continue to be populated with other models related to COVID-19 prediction as these become available. This dynamic platform allows COVID-19 researchers to contact us to have their model curated and included on our website, thereby increasing the reach and real-world impact of their work.ConclusionWe have successfully demonstrated in this proof-of-principle study that our website provides an inclusive platform for predictive models related to COVID-19. It enables doctors to supplement their judgment with patient-specific predictions from externally-validated models in a user-friendly format. Additionally, this platform supports researchers in showcasing their work, which will increase the visibility and use of their models.


2021 ◽  
Author(s):  
Sebastian Johannes Fritsch ◽  
Konstantin Sharafutdinov ◽  
Moein Einollahzadeh Samadi ◽  
Gernot Marx ◽  
Andreas Schuppert ◽  
...  

BACKGROUND During the course of the COVID-19 pandemic, a variety of machine learning models were developed to predict different aspects of the disease, such as long-term causes, organ dysfunction or ICU mortality. The number of training datasets used has increased significantly over time. However, these data now come from different waves of the pandemic, not always addressing the same therapeutic approaches over time as well as changing outcomes between two waves. The impact of these changes on model development has not yet been studied. OBJECTIVE The aim of the investigation was to examine the predictive performance of several models trained with data from one wave predicting the second wave´s data and the impact of a pooling of these data sets. Finally, a method for comparison of different datasets for heterogeneity is introduced. METHODS We used two datasets from wave one and two to develop several predictive models for mortality of the patients. Four classification algorithms were used: logistic regression (LR), support vector machine (SVM), random forest classifier (RF) and AdaBoost classifier (ADA). We also performed a mutual prediction on the data of that wave which was not used for training. Then, we compared the performance of models when a pooled dataset from two waves was used. The populations from the different waves were checked for heterogeneity using a convex hull analysis. RESULTS 63 patients from wave one (03-06/2020) and 54 from wave two (08/2020-01/2021) were evaluated. For both waves separately, we found models reaching sufficient accuracies up to 0.79 AUROC (95%-CI 0.76-0.81) for SVM on the first wave and up 0.88 AUROC (95%-CI 0.86-0.89) for RF on the second wave. After the pooling of the data, the AUROC decreased relevantly. In the mutual prediction, models trained on second wave´s data showed, when applied on first wave´s data, a good prediction for non-survivors but an insufficient classification for survivors. The opposite situation (training: first wave, test: second wave) revealed the inverse behaviour with models correctly classifying survivors and incorrectly predicting non-survivors. The convex hull analysis for the first and second wave populations showed a more inhomogeneous distribution of underlying data when compared to randomly selected sets of patients of the same size. CONCLUSIONS Our work demonstrates that a larger dataset is not a universal solution to all machine learning problems in clinical settings. Rather, it shows that inhomogeneous data used to develop models can lead to serious problems. With the convex hull analysis, we offer a solution for this problem. The outcome of such an analysis can raise concerns if the pooling of different datasets would cause inhomogeneous patterns preventing a better predictive performance.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
A Youssef

Abstract Study question Which models that predict pregnancy outcome in couples with unexplained RPL exist and what is the performance of the most used model? Summary answer We identified seven prediction models; none followed the recommended prediction model development steps. Moreover, the most used model showed poor predictive performance. What is known already RPL remains unexplained in 50–75% of couples For these couples, there is no effective treatment option and clinical management rests on supportive care. Essential part of supportive care consists of counselling on the prognosis of subsequent pregnancies. Indeed, multiple prediction models exist, however the quality and validity of these models varies. In addition, the prediction model developed by Brigham et al is the most widely used model, but has never been externally validated. Study design, size, duration We performed a systematic review to identify prediction models for pregnancy outcome after unexplained RPL. In addition we performed an external validation of the Brigham model in a retrospective cohort, consisting of 668 couples with unexplained RPL that visited our RPL clinic between 2004 and 2019. Participants/materials, setting, methods A systematic search was performed in December 2020 in Pubmed, Embase, Web of Science and Cochrane library to identify relevant studies. Eligible studies were selected and assessed according to the TRIPOD) guidelines, covering topics on model performance and validation statement. The performance of predicting live birth in the Brigham model was evaluated through calibration and discrimination, in which the observed pregnancy rates were compared to the predicted pregnancy rates. Main results and the role of chance Seven models were compared and assessed according to the TRIPOD statement. This resulted in two studies of low, three of moderate and two of above average reporting quality. These studies did not follow the recommended steps for model development and did not calculate a sample size. Furthermore, the predictive performance of neither of these models was internally- or externally validated. We performed an external validation of Brigham model. Calibration showed overestimation of the model and too extreme predictions, with a negative calibration intercept of –0.52 (CI 95% –0.68 – –0.36), with a calibration slope of 0.39 (CI 95% 0.07 – 0.71). The discriminative ability of the model was very low with a concordance statistic of 0.55 (CI 95% 0.50 – 0.59). Limitations, reasons for caution None of the studies are specifically named prediction models, therefore models may have been missed in the selection process. The external validation cohort used a retrospective design, in which only the first pregnancy after intake was registered. Follow-up time was not limited, which is important in counselling unexplained RPL couples. Wider implications of the findings: Currently, there are no suitable models that predict on pregnancy outcome after RPL. Moreover, we are in need of a model with several variables such that prognosis is individualized, and factors from both the female as the male to enable a couple specific prognosis. Trial registration number Not applicable


Author(s):  
Ovunc Kocabas ◽  
Regina Gyampoh-Vidogah ◽  
Tolga Soyata

This chapter describes the concepts and cost models used for determining the cost of providing cloud services to mobile applications using different pricing models. Two recently implemented mobile-cloud applications are studied in terms of both the cost of providing such services by the cloud operator, and the cost of operating them by the cloud user. Computing resource requirements of both applications are identified and worksheets are presented to demonstrate how businesses can estimate the operational cost of implementing such real-time mobile cloud applications at a large scale, as well as how much cloud operators can profit from providing resources for these applications. In addition, the nature of available service level agreements (SLA) and the importance of quality of service (QoS) specifications within these SLAs are emphasized and explained for mobile cloud application deployment.


Sign in / Sign up

Export Citation Format

Share Document