Optimisation of material compositions for flammability characteristics in rice husk/polyethylene composites

2014 ◽  
Vol 33 (22) ◽  
pp. 2021-2033 ◽  
Author(s):  
Ahmad Bilal ◽  
Richard JT Lin ◽  
Krishnan Jayaraman

A parametric study on the flammability characteristics of rice husk-reinforced polyethylene composites with various material compositions was conducted to find the “best” composites’ formulation for fire retardancy. Composites were manufactured using rice husk, maleated anhydride polyethylene and linear medium density polyethylene. The blends for manufacturing of composites were selected using mixture design approach. The individual effects of each constituent material on the fire performance of composites by cone calorimeter were studied using trace and contour plots for the various thermal and flammability properties. Regression coefficients were also estimated for each measured response. The cone calorimetry results show that the addition of rice husk improved fire retardancy of composites. The addition of maleated anhydride polyethylene did not influence the flammability properties much, except for mass loss rate and specific extinction area. The optimum mixture of rice husk, maleated anhydride polyethylene and linear medium density polyethylene for overall “best” flammability properties of the composites was also determined by multiple response optimisation using the regression models in Design Expert software. The optimum mixture for overall “best” fire retardant properties was found to be 50 wt% of rice husk, 5.6 wt% of maleated anhydride polyethylene and 44.4 wt% of linear medium density polyethylene. The flammability properties measured from composites manufactured with this formulation closely matched the values predicted by the model.

2019 ◽  
Vol 34 (1) ◽  
pp. 96-106 ◽  
Author(s):  
Chao Zheng ◽  
Dongfang Li ◽  
Monica Ek

Abstract Sustainable thermal insulating materials produced from cellulosic fibers provide a viable alternative to plastic insulation foams. Industrially available, abundant, and inexpensive mechanical pulp fiber and recycled textile fiber provide potential raw materials to produce thermal insulating materials. To improve the fire retardancy of low-density thermal insulating materials produced from recycled cotton denim and mechanical pulp fibers, bio-based fire retardants, such as sulfonated kraft lignin, kraft lignin, and nanoclays, were coated onto sustainable insulating material surfaces to enhance their fire retardancy. Microfibrillated cellulose was used as a bio-based binder in the coating formula to disperse and bond the fire-retardant particles to the underlying thermal insulating materials. The flammability of the coated thermal insulating materials was tested using a single-flame source test and cone calorimetry. The results showed that sulfonated kraft lignin-coated cellulosic thermal insulating materials had a better fire retardancy compared with that for kraft lignin with a coating weight of 0.8 kg/m2. Nanoclay-coated samples had the best fire retardancy and did not ignite under a heat flux of 25 kW/m2, as shown by cone calorimetry and single-flame source tests, respectively. These cost-efficient and bio-based fire retardants have broad applications for improving fire retardancy of sustainable thermal insulating materials.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 1311-1324
Author(s):  
Yating Hua ◽  
Chungui Du ◽  
Huilong Yu ◽  
Ailian Hu ◽  
Rui Peng ◽  
...  

Flame-retardant silicate-intercalated calcium aluminum hydrotalcites (CaAl-SiO3-LDHs) were synthesized to treat bamboo for retardancy, to overcome the bamboo’s flammability and reduce the production of toxic smoke during combustion. The microstructure, elemental composition, flame retardancy, and smoke suppression characteristics of the bamboo before and after the fire-retardant treatment with different pressure impregnation were studied using a scanning electron microscope (SEM), elemental analysis (EDX), and cone calorimetry. It was found that CaAl-SiO3-LDHs flame retardants can effectively fill and cover the cell wall surface and the cell cavity of bamboo without damaging the microstructure. As compared to the non-flame-retardant bamboo, the heat release rate (HRR) of the CaAl-SiO3-LDHs flame-retardant bamboo was significantly reduced, the total heat release (THR) decreased by 31.3%, the residue mass increased by 51.4%, the time to ignition (TTI) delay rate reached 77.8%, the mass loss rate (MLR) decreased, and the carbon formation improved. Additionally, as compared to the non-flame-retardant bamboo, the total smoke release (TSR) of the CaAl-SiO3-LDHs flame-retardant bamboo decreased by 38.9%, and the carbon monoxide yield (YCO) approached zero. Thus, the CaAl-SiO3-LDHs flame-retardant bamboo has excellent flame-retardancy and smoke suppression characteristics.


2015 ◽  
Vol 815 ◽  
pp. 148-152 ◽  
Author(s):  
Tengku Nuraiti Tengku Izhar ◽  
Chan Choon Jiat ◽  
Nabilah Aminah Lutpi

The objective of this study is to investigate the fire retardancy effect of coconut coir, rice husk and sawdust panels which are incorporated with magnesium hydroxide (Mg (OH)2) and zinc borate (2ZnO∙3B2O3∙3.5H2O) as additives. The natural fiber and additives are mixed and cured for one week, with polyester resin and hardening catalyst as binders. Fire retardancy of these panels are tested according to American Society for Testing and Materials (ASTM) Horizontal (D 365) and Vertical Burning (D 3801) tests. Principle of fire retardants and mechanism of polymer combustion are shown in this study too. The study revealed that the sawdust panels with both additives have the highest fire retardancy compared to rice husk and coconut coir panel with both additives.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 435
Author(s):  
Feiyu Tian ◽  
Deliang Xu ◽  
Xinwu Xu

This study explored the feasibility of fabricating fire-retardant strandboard with low mechanical properties deterioration to the physico-mechanical properties. A hybrid fire-retardant system of ammonium polyphosphate (APP) and 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TBC) was investigated. Thermogravimetric analysis results show that both APP and TBC enhance the thermal stability and incombustibility of wood strands. An infrared spectrum was applied to investigate the effect of flame retardants on the curing behaviors of polymeric diphenylmethane diisocyanate (PMDI) resin. Based on the results of limiting oxygen index (LOI) and Cone calorimetry (CONE), APP and TBC both lead to a higher fire retardancy to strandboard. It is worth mentioning that the two flame retardants lead to evidently differential influences on the modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB), and water-soaking thickness swelling (TS) properties of strandboard. Hence, a hybrid flame retardant is prominent in manufacturing strandboard with both good fire retardant and satisfying physico-mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3440
Author(s):  
Mohd Na’im Abdullah ◽  
Mazli Mustapha ◽  
Nabihah Sallih ◽  
Azlan Ahmad ◽  
Faizal Mustapha ◽  
...  

The utilisation of rice husk ash (RHA) as an aluminosilicate source in fire-resistant coating could reduce environmental pollution and can turn agricultural waste into industrial wealth. The overall objective of this research is to develop a rice-husk-ash-based geopolymer binder (GB) fire-retardant additive (FR) for alkyd paint. Response surface methodology (RSM) was used to design the experiments work, on the ratio of RHA-based GB to alkyd paint. The microstructure behaviour and material characterisation of the coating samples were studied through SEM analysis. The optimal RHA-based GB FR additive was formulated at 50% wt. FR and 82.628% wt. paint. This formulation showed the result of 270 s to reach 200 °C and 276 °C temperature at equilibrium for thermal properties. Furthermore, it was observed that the increased contents of RHA showed an increment in terms of the total and open porosities and rough surfaces, in which the number of pores on the coating surface plays an important role in the formation of the intumescent char layer. By developing the optimum RHA-based GB to paint formulation, the coating may potentially improve building fire safety through passive fire protection.


2014 ◽  
Vol 299 (7) ◽  
pp. 807-813 ◽  
Author(s):  
Susana Vargas ◽  
J. Rogelio Rodriquez ◽  
Haley E. Hagg Lobland ◽  
Katarzyna Piechowicz ◽  
Witold Brostow

2018 ◽  
Vol 53 (12) ◽  
pp. 1705-1715 ◽  
Author(s):  
Yousof M Ghazzawi ◽  
Andres F Osorio ◽  
Michael T Heitzmann

The fire performance of polycarbonate resin and the role of glass fibre reinforcement in altering the fire performance was investigated. Three different fibre weaves with comparable surface density, plain, twill, and unidirectional glass fabrics, were used as reinforcements. E-glass fabrics were solution-impregnated with polycarbonate/dichloromethyl, laid up, and compression-moulded to consolidate the glass fibre reinforced polycarbonate composite. Cone calorimetry tests with an incident radiant flux of 35 kW/m2 were used to investigate the fire properties of polycarbonate resin and its composites. Results showed that glass fibre reinforcement improves polycarbonate performance by delaying its ignition, decreasing its heat release rate, and lowering the mass loss rate. The three fibre weave types exhibited similar time to ignition. However, unidirectional fibre had a 35% lower peak heat release rate followed when compared to plain and twill weave fibres.


2018 ◽  
Vol 64 (3) ◽  
pp. 105-114 ◽  
Author(s):  
Masayuki Kawarasaki ◽  
Ryoichi Hiradate ◽  
Yasushi Hirabayashi ◽  
Shinichi Kikuchi ◽  
Yoshifumi Ohmiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document