Tensile mechanical behavior and failure mechanisms of multihole fiber metal laminates—Experimental characterization and numerical prediction

2020 ◽  
Vol 39 (13-14) ◽  
pp. 499-519
Author(s):  
Wentao He ◽  
Changzi Wang ◽  
Shuqing Wang ◽  
Lu Yao ◽  
Jun Wu ◽  
...  

This work mainly investigates the effects of the hole number and layer direction on the tensile mechanical behavior and failure mechanisms of multihole fiber metal laminates by experimental and numerical methods. With the aid of digital image correlation technique, tensile tests are implemented to obtain mechanical responses of different multihole fiber metal laminates. Subsequently, numerical simulation considering thermal residual stress is conducted to elucidate the failure modes and progressive damage evolution of multihole fiber metal laminates, which integrates the progressive damage model of composite laminates and a cohesive zone model between aluminum sheet/composite laminates. Finally, numerical predictions are found in a good agreement with experimental measurements, in terms of mechanical responses and fracture morphologies. Results demonstrate that the number of holes has negligible influence on the ultimate tensile strength, whereas affects the final failure strain of multihole fiber metal laminates evidently. With the increase of layer direction, the fracture morphology changes from evident brittle fracture to fiber pull-out and matrix damage, which indicates that the critical failure mechanism of multihole fiber metal laminates changes from tension dominated to tension–shear dominated. Additionally, the longer loading history from initial damage to final failure of composite laminates demonstrates the significance of considering progressive damage behavior in numerical simulation.

2022 ◽  
pp. 115142
Author(s):  
Lu Yao ◽  
Shaofeng Zhang ◽  
Xiaojian Cao ◽  
Zhenyuan Gu ◽  
Changzi Wang ◽  
...  

2020 ◽  
Vol 254 ◽  
pp. 112858
Author(s):  
Huaguan Li ◽  
Hao Wang ◽  
René Alderliesten ◽  
Junxian Xiang ◽  
Yanyan Lin ◽  
...  

2018 ◽  
Vol 53 (11) ◽  
pp. 1489-1506 ◽  
Author(s):  
Ankush P Sharma ◽  
Sanan H Khan ◽  
Venkitanarayanan Parameswaran

The tensile behavior of fiber metal laminates consisting of layers of aluminum 2024-T3 alloy and glass fiber reinforced composites under high strain rate loading is investigated. Fiber metal laminates having four different layups, but all having the same total metal layer thickness, were fabricated using a combined hand lay-up cum vacuum bagging method. The fiber metal laminate specimens were loaded in high strain rate tension using a split Hopkinson tensile bar. The rate-dependent behavior of the glass fiber composite was also obtained as baseline data. The strain on the gage area of the specimen was measured directly using high-speed digital image correlation. Another high-speed camera was used to capture the sequence of damage by viewing the specimen edgewise. The results indicated that the strength of the fiber metal laminates increased at high strain rates primarily due to the rate-dependent behavior of the composite used. The response was also influenced by the distribution of the metallic layers in the fiber metal laminates. The failure in the case where the individual composite layers were separated by metallic layers was more progressive in nature.


Author(s):  
Vahid Zal ◽  
Hassan Moslemi Naeini ◽  
Ahmad Reza Bahramian ◽  
Hadi Abdollahi

A study on new materials usage to produce fiber metal laminates is presented in this work. Amorphous polyvinyl chloride thermoplastic and aluminum 3550 sheets are used to fabricate the fiber metal laminates. Different surface treatments were carried out on the aluminum sheets and the fiber metal laminates were produced using the film stacking procedure. Flexural strength and modulus of the products and also shear strength of bonding were measured using three-point bending test, and their failure mechanisms were evaluated using optical microscope images. Also, the effects of aluminum layer and aluminum/composite laminates bonding on the dynamic properties of the fiber metal laminates were studied using Dynamic Mechanical Thermal Analysis. It was concluded that mechanical roughening of the aluminum sheet has the maximum effect on the aluminum/matrix bonding strength such that simultaneous fracture of composite laminates and aluminum layer in the bending condition was observed in the produced fiber metal laminates without any delamination.


Fiber Metal Laminates (FML) are a class of composites that are recently employed to substitute sole metals in various applications like aerospace applications. In this investigation, a new type of FML was successfully fabricated using compression moulding in which Aluminium and ceramics mat are stacked in the presence of epoxy resin. To improve the bonding by ensuring the flow of resin through the laminates, drilling with various pattern on the Aluminium sheet and ceramic mat were performed before subjected to compression to form FML. Aluminium sheets with Zig-zag pattern performed in a better way due to the improvements in bonding. In addition, drilling operation was done on the FML to ensure the de-lamination resistance and machinability. The drill bit before and after drilling was inspected by using optical microscope to understand the machinability behaviour of the FML.


Sign in / Sign up

Export Citation Format

Share Document